方程2x^-(「3 +1)x+m=0的两根为sinθ,cosθ,θ∈(0,2∏),求(1)sinθ/1-cotθ+cosθ/1-tanθ;(2)m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:37:13

方程2x^-(「3 +1)x+m=0的两根为sinθ,cosθ,θ∈(0,2∏),求(1)sinθ/1-cotθ+cosθ/1-tanθ;(2)m
方程2x^-(「3 +1)x+m=0的两根为sinθ,cosθ,θ∈(0,2∏),求(1)sinθ/1-cotθ+cosθ/1-tanθ;(2)m

方程2x^-(「3 +1)x+m=0的两根为sinθ,cosθ,θ∈(0,2∏),求(1)sinθ/1-cotθ+cosθ/1-tanθ;(2)m
sinθ/(1-cotθ)+cosθ/(1-tanθ)
=sinθ+cosθ
=(√3 +1)/2
sinθ+cosθ=(√3 +1)/2
sinθcosθ=m/2
(sinθ+cosθ)^2=1+2sinθcosθ=1+m=1+√3/2
m=√3/2

(1)因为sinθ,cosθ是方程2x^-(√3 +1)x+m=0的两根,
sinθ+cosθ=(√3 +1)/2,sinθ*cosθ=m/2,
sinθ/(1-cotθ)+cosθ/(1-tanθ)
=sinθ/(1-cosθ/sinθ)+cosθ/(1-sinθ/cosθ)
=sin²θ/(sinθ-cosθ)+cos²θ/(cosθ-sin...

全部展开

(1)因为sinθ,cosθ是方程2x^-(√3 +1)x+m=0的两根,
sinθ+cosθ=(√3 +1)/2,sinθ*cosθ=m/2,
sinθ/(1-cotθ)+cosθ/(1-tanθ)
=sinθ/(1-cosθ/sinθ)+cosθ/(1-sinθ/cosθ)
=sin²θ/(sinθ-cosθ)+cos²θ/(cosθ-sinθ)
=(sin²θ-cos²θ)/(sinθ-cosθ)
=sinθ+cosθ=(√3 +1)/2.
(2)因为(sinθ+cosθ)²
=sin²θ+cos²θ+2sinθ*cosθ
=1+2sinθ*cosθ,
所以 【(√3 +1)/2】²=1+m,
则m=√3/2.

收起

m是何实数时,关于x的方程x²-(3m+2)x+6m+1=0的两实根的平方和等于11 已知关于x的方程(m+1)x²+2(2m+1)x+1-3m=0的两根为x1,x2,若x1 已知sinx,cosx是关于x的方程x^2-(根3-1)x+m=0(m属于R)的两根,求m值 已知sinx,cosx是关于x的方程x^2-(根3-1)x+m=0(m属于R)的两根,求m值 1、若方程x方+mx+m=o的两个实数根互为相反数,那么m的值是.2、已知方程2(x-1)(x-3m)=x(m-4)两根的和与两根的积相等,则m=.3、如果关于x的方程x方-4x+m=0与x方-x-2m=0有一个根相同,则m的值为.4、设方 解关于x的方程(m-1)x的平方-2(m-3)x-8=0(分m=1,m≠1两种情况讨论) 方程3x^2-8x+m=0的两根之比为3:1,则m= 方程2x方+(m-1)x+m-3=0的两根互为倒数,求m的值和根 关于x的方程3x²-(4m²-1)x+m(m+2)=0的两实数根两根之和等于两实数根的倒数和,求m的值? 当m为何值时,方程x^2+(m+2)x+2m-1的两根互为相反数,并求出此时方程的根.=0 关于x的方程x^2+(m-2)x+(m-3)=0的两根的平方和取最小值时,确定实数m的值. 若关于x的方程(m^2-2)x^2-(m-2)x+1=0的两实根互为倒数,则m的值是? 关于x的方程2x的平方+(m的平方-2)x-m-1=0,当m=( )时,两根互为倒数 1.关于X的方程X平方-(2*M的平方+M-6)X-M+0两根互为相反数则M的值2.用换元法解方程 X平方+(1/X)的平方-5X+5/X-66=0 如果设X+1/X=T 则原方程可化为?3.已知关于X的方程(M的平方-1)X^2+(M+1)X+M-2=0当M为 时 方 若关于x的方程x²-(m-3)x+¼m²-2=0的两根之和大于-1,求m 关于X的方程2X平方+(M平方-9)X+M+1=0,当M=?时,两根互为倒数 1、已知斜边为10的直角三角形的两条直角边a、b分别为方程x-mx+3m+6=0的两根,则m?2、若关于x的方程x²-(m-1)x+m-7=0有两个正实根,则m的取值范围是?3、若关于x的方程4x²-(m-1)x+(m-6)=0有 已知x的方程x*x+(2m+1)x+m*m+2=0有两不相等的实数根,直线y=(2m-3)x-4m+7能否通过点A(-2,4)为什末?