如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E (1)求证,点E是边BC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:44:05
如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E (1)求证,点E是边BC的中点
如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E (1)求证,点E是边BC的中点
如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E (1)求证,点E是边BC的中点
连接od ,cd. od=oc=oa, 角ocd =角odc, 因为de是切线,角cde+角odc=90度.角ocd+角dcb=90度,角bcd=角cde ,所以de=ce.又三角形adc相似三角形acb,则 角b等于角acd,又角acd+ dcb=90 则角b+角dcb=90 ,角b+角cde=90, 角 cde+角bde=90 角 b=角bde ,be=de, be=ce ,那么e是中点.手机打得乱.对不住拉
(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;(1分)
连接CD,∵BC为直径,
∴∠ADC=∠BDC=90°;
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB;
∴AC/AB=AD/AC,∴AD=AC平方/AB=9/5;(3分)
(2)当点E是AC的中点时,ED与⊙O相切;(1分)
全部展开
(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;(1分)
连接CD,∵BC为直径,
∴∠ADC=∠BDC=90°;
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB;
∴AC/AB=AD/AC,∴AD=AC平方/AB=9/5;(3分)
(2)当点E是AC的中点时,ED与⊙O相切;(1分)
证明:连接OD,∵DE是Rt△ADC的中线;
∴ED=EC,∴∠EDC=∠ECD;
∵OC=OD,∴∠ODC=∠OCD;(2分)
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;
∴ED与⊙O相切.(2分)
收起