如图,在△ABC中,∠BAC=90°,AB=AC,在BC边上取M.N两点,使∠MAN=45°,试判断以线段BM,MN、NC为边的三角形形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:30:36

如图,在△ABC中,∠BAC=90°,AB=AC,在BC边上取M.N两点,使∠MAN=45°,试判断以线段BM,MN、NC为边的三角形形
如图,在△ABC中,∠BAC=90°,AB=AC,在BC边上取M.N两点,使∠MAN=45°,试判断以线段BM,MN、NC为边的三角形形

如图,在△ABC中,∠BAC=90°,AB=AC,在BC边上取M.N两点,使∠MAN=45°,试判断以线段BM,MN、NC为边的三角形形
把△ABM逆时针旋转90度,得△ACP,连结PN,
则△ABM≌△APC,
∴AP=AM,
BM=CP,
〈ACP=〈ABC=45°,
AB=AC,
AN=AN,
〈NAP=90°-〈MAN=90°-45°=45°,
∴〈MAN=〈PAN=45°,
∴△MAN≌△PAN,(SAS),
∴MN=NP,
∴△PNC就是以BM、MN、NC为边的△,
〈NCP=〈ACP+〈ACB=45°+45°=90°,
∴△NCP为RT△,
所以以BM、MN、NC为边的三角形为直角三角形.

将ΔABM以A为旋转中心逆时针旋转90°到ΔACM’处,如图所示
则可证ΔABM≌ΔACM’
可证ΔAMN≌ΔAM’N
∴MN=M’N
∵∠BAC=90°
∴∠B+∠5=90°
∵∠B=∠4
∴∠4+∠5=90°
即∠M’CM=90°
依勾股定理
M'C方+CN方=M'N方
∵M’C=MB,M’N=MN

全部展开

将ΔABM以A为旋转中心逆时针旋转90°到ΔACM’处,如图所示
则可证ΔABM≌ΔACM’
可证ΔAMN≌ΔAM’N
∴MN=M’N
∵∠BAC=90°
∴∠B+∠5=90°
∵∠B=∠4
∴∠4+∠5=90°
即∠M’CM=90°
依勾股定理
M'C方+CN方=M'N方
∵M’C=MB,M’N=MN
∴MB方+CN方=MN方

收起

MN²=BM²+CN²
证明:过点B作BG⊥BC(G与A在BC的同一侧),取BG=CN,连接AG、MG
∵AB=AC,∠BAC=90
∴∠ABC=∠C=45
∵BG⊥BC
∴∠GBC=90
∴∠ABG=∠GBC-∠ABC=45,MG²=BM²+BG²
∴∠ABG=∠C
∵BG...

全部展开

MN²=BM²+CN²
证明:过点B作BG⊥BC(G与A在BC的同一侧),取BG=CN,连接AG、MG
∵AB=AC,∠BAC=90
∴∠ABC=∠C=45
∵BG⊥BC
∴∠GBC=90
∴∠ABG=∠GBC-∠ABC=45,MG²=BM²+BG²
∴∠ABG=∠C
∵BG=CN
∴△ABG≌△ACN (SAS)
∴AG=AN,∠BAG=∠CAN
∵∠MAN=45
∴∠BAM+∠CAN=∠BAC-∠MAN=45
∴∠MAG=∠BAM+∠BAG=∠BAM+∠CAN=45
∴∠MAG=∠MAN
∵AM=AM
∴△MAN≌△MAG (SAS)
∴MG=MN
∴MN²=BM²+CN²

收起

如图,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,求AD的长. 如图,在△ABC中,AB=AC,∠BAC=α,且60° 如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于点D,CE⊥MN于点E,求证:∠BAC=90°. 如图在Rt△abc中,∠bac=90°,∠b=60°,如图,在Rt△abc中,∠bac=90°,∠b=60°,△ab‘c’可以由△abc绕点a顺时针旋转90°得到,连接cc‘,则∠cc'b'的度数为 如图,13.3-21,在△ABC中∠C90°,∠BAC=60°如图. 如图,在△ABC中,∠ABC=90°,CD⊥AB,AF平分∠BAC,求证:∠CFE=∠CEF 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC 如图 在△abc中 ∠bac=120° ad平分∠bac交bc于d 求证:1/ad=1/ab+1/ac 如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若∠BAC=90°,求证:AD=BD修改∠BAC=30° 如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,求点O到△ABC的三个顶点A,B,C距离的关系 如图,在△ABC中,AB=AD=DC,∠BAD=32°,求∠BAC度数 如图在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D 已知:如图,在△ABC中,AB=AC,∠BAC=α,且60° 如图,在三角形ABC中,角BAC=90°,AB=AC=a,AD是三角形ABC的高,求AD的长. 如图,有个RT△ABC,∠BAC=90°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A在反比例函数Y=根号如图,有个RT△ABC,∠BAC=90°,∠ABC=30°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A 如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB 【1】说明:AC=AE+CD图在这儿 如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B事对应点如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B是对应点,点C 如图,在△ABC中,AB=AC,∠BAC=108°,D在AC上且BC=AB+CD,求证:BD平分∠ABC