急求七年级一元一次方程和线或角的应用题!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:41:34
急求七年级一元一次方程和线或角的应用题!
急求七年级一元一次方程和线或角的应用题!
急求七年级一元一次方程和线或角的应用题!
1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
2.1)某大商场家电部送货人员与销售人员人数之比为1:8.今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货.结果送货人员与销售人数之比为2:5.求这个商场家电部原来各有多少名送货人员和销售人员?
设送货人员有X人,则销售人员为8X人.
(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154
X=14
8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员
现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
3.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
4.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4.求原来每个车间的人数.
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
5.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
6..甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度.
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
7.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2.4
即停电了2.4小时.
1.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?
设小组成员有x名
5x=4x+15+9
5x-4x=15+9
8.某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.试问
(1) 初一年级人数是多少?原计划租用45座客车多少辆?
租用45座客车x辆,租用60座客车(x-1)辆,
45x+15=60(x-1)
解之得:x=5 45x+15=240(人)
答:初一年级学生人数是240人,
计划租用45座客车为5辆
9.将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?
解;设为XH
1/5+1/20X+1/12X=1
8/60X=4/5
X=6
甲,乙两人合作的时间是6H.
10.甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()
设甲数为4X.则乙为3X.丙为3X-2.
4X+3X+3X-2=53
10X=53+2
10X=55
X=5.5
3X=16.5
3X-2=16.5-2=14.5
乙为16.5,丙为14.5
11.粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?
设停电x小时. 粗蜡烛每小时燃烧1/5,细蜡烛是1/4
1-1/5X=4(1-1/4)
1-1/5X=4-X
-1/5+X=4-1
4/5X=3
X=15/4
12.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
设十位数为x
则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171
化简得
424x=1272
所以:x=3
则这个三位数为437
13.一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?
设⑵班捐x册
3x=152+x+3xX40%
3x=152+x+6/5x
3x-x-6/5x=152
4/5x=152
x=190…⑵班
190X3=570(本)
14.a b 两地相距31千米,甲从a地骑自行车去b地 一小时后乙骑摩托车也从a地去b地 已知甲每小时行12千米 乙每小时行28千米 问乙出发后多少小时追上甲
设乙出发x小时后追上甲,列方程
12(X+1)=28X X=0.75小时,即45分钟
15、一艘货船的载重量是400t,容积是860m^3.现在要装生铁和棉花两种货物,生铁每吨体积是0.3m^3,棉花每吨体积是4m^3.生铁和棉花各装多少吨,才能充分利用这艘船的载重量和容积?
设铁x吨,棉花为400-x吨
0.3x+4*(400-x)=860
x=200t
答案为铁和棉花各200吨
16、某电脑公司销售A、B两种品牌电脑,前年共卖出2200台,去年A种电脑卖出的数量比前年多6%,B种电脑卖出的数量比前年减少5%,两种电脑的总销量增加了110台.前年A、B两种电脑各卖了多少台?
设前年A电脑卖出了x台,B电脑卖出了2200-x台
去年A电脑为1.06x,B电脑为0.95(2200-x)
1.06x+0.95*(2200-x)=2200+110
x=2000
则A电脑2000台,B电脑200台
17.地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里)
设陆地的面积是X
X+71/29X=5.1
X=1.479
即陆地的面积是:1.5亿平方公里.
18. 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少?
设下降高度是X
下降的水的体积等于铁盒中的水的体积.
3.14*45*45*X=131*131*81
X=218.6
水面下降218.6毫米.
19.内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高?
内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水
所以两个容器体积相等
内径为300毫米,内高为32毫米的圆柱形玻璃盘体积
V=π(300/2)^2*32=720000π
设玻璃杯的内高为X
那么
X*π(120/2)^2=720000π
X=200毫米
20.将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满.求圆柱形水桶的水高?(精确到毫米.派取3.14)
设水桶的高是X
3.14*100*100*X=300*300*80
X=229
即水桶的高是229毫米
21.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天.如果有由两个工程队从两端同时想象施工,要多少天可以铺好?
解:设X天可以铺好
1/18X+1/12X=1
2/36X+3/36X=1
5/36X=1
X=1除以5/36
X=1乘以36/5
X=36/5
即要36/5天
某数的3倍减2等于某数与4的和,求某数.
解法1:(4+2)÷(3-1)=3.
答:某数为3.
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
一元一次方程应用题:(1)某校初一学生为保护我国珍贵动物大熊猫捐款,(1)班捐款数为初一总捐款数的 ,(2)班捐款数为(1)、(3)班捐款数的和的一半,(3)班捐了380元,求初一总捐款数。
(2)学校把2000元奖学金发给全校25名三好学生,其中市级三好学生每人奖金200元,校级三好学生每人奖金50元,问全校市级三好学生、校级三好学生各多少人?
(3)甲车在早上5时以每小时3...
全部展开
一元一次方程应用题:(1)某校初一学生为保护我国珍贵动物大熊猫捐款,(1)班捐款数为初一总捐款数的 ,(2)班捐款数为(1)、(3)班捐款数的和的一半,(3)班捐了380元,求初一总捐款数。
(2)学校把2000元奖学金发给全校25名三好学生,其中市级三好学生每人奖金200元,校级三好学生每人奖金50元,问全校市级三好学生、校级三好学生各多少人?
(3)甲车在早上5时以每小时32千米的速度由A地向B地行驶,6时30分乙车才开始出发,结果在9时30分乙车追上了甲车,问乙车的速度是多少?
(4)某商品的进价为200元,标价为300元,折价销售时利润为5%此商品是按几折销售?
(5)张叔叔用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用于购物,剩下的一半及所得的利息又全部买了这种一年期债券(利率不变),到期的得本息和1320元,问张叔叔当初购买这种债券花了多少元?
(6)KING公司生产有A、B两种刹车片,现在对同一种高速行驶的赛车实施刹车实验,实验数据如下表:
1秒后车速 2秒后车速 3秒后车速 4秒后车速 5秒后车速 …… T秒后车速
配A片的车 92米/秒 84米/秒 7 6米/秒 68米/秒 米/秒 ……
配B片的车 98米/秒 96米/秒 92米/秒 84米/秒 68米/秒 ……
根据数据表回答下面的问题:
(1)请根据配A种刹车片的赛车的实验数据规律推算出5秒后的车速并填入相应表格中。
(2)请用所学的知识归纳出两种刹车上的减速规律(t秒后的车速与t 的关系)并分别填入表格中的最后一处。
(3)实验时的赛车是从速度为 米/秒时开始减速的。
(4)请通过计算说明:配A种刹车片的赛车从刹车开始经过多少秒后才能停稳?
回答:
1:留道给你做做..^-^
2.设市级的x个 校级的(25-x)个
200x+50(25-x)=2000 x=5 市级5个 校级20个
3.5点到9点半是4.5小时 甲总共跑了32*4.5=144千米
6点半到9点半是3小时 乙跑了144千米 速度为144/3=48千米每小时
4.利润5%时卖200*(1+5%)=210 折扣是210/300=0.7 七折
5.第二次存的本金是1320/110%=1200 是第一次本金的一半和第一次的利息
设第一次存了x 则1/2x+10%x=1200 x=2000
6.(1)60米每秒
(2)A v=92-8t
B x=98-2t^2
(3)A是100米每秒
B是99米每秒
(4)12秒
线或角的应用题:1.∠AOB的平分线为OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线,∠GOB是一个直角,其它∠全在∠GOB内,某同学经过认真的分析,得出一个关系式是∠MON=1/2(∠BON-∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来。
2.将一副直角三角形板叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=( )°
3.甲同学从A处出发向北偏东75°方向走10米到B处,乙同学从A处出发向南偏西15°方向走15米到C处,那么AB与AC所成角的度数是( )
4.已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别为线段OA、OB的中点,则线段EF的长度为( )cm。
问题补充:∠AOB=90°,OC为∠AOB外的一条射线,OE为∠BOC的平分线,OF为∠AOC的平分线,求∠EOF的度数。
回答:1.正确的,证明过程如下
∠BON=∠BOM+∠MON=1/2∠AOB+∠MON
∠AON=∠BOM-∠MON=1/2∠AOB-∠MON
∠BON-∠AON=(1/2∠AOB+∠MON)-(1/2∠AOB-∠MON)=2∠MON
∠MON=1/2(∠BON-∠AON)
2.实在没搞明白∠AOB和∠DOC是哪两个角……
3.∠BAC=120°
4.EF=1/2OA+1/2OB=1/2*4+1/2*6=5cm
5.45°
∠BOC=∠AOC+90°
∠AOE=∠AOB-∠BOE=90°-1/2∠BOC=90°-1/2(∠AOC+90)=45°-1/2∠AOC
∠AOF=1/2∠AOC
∠EOF=∠AOF+∠AOE=1/2∠AOC+45°-1/2∠AOC=45°
收起
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代...
全部展开
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.
20.解方程: (x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.
======================================================================
3.2 解一元一次方程(一)
——合并同类项与移项
【知能点分类训练】
知能点1 合并与移项
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.
2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x
(3)y- = y-2 (4)7y+6=4y-3
6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.
7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?
10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.
11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?
【综合应用提高】
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?
13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.
【开放探索创新】
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.
【中考真题实战】
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).
答案:
1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.
(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.
2.B [点拨:方程 x= ,两边同除以 ,得x= )
3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)
4.(1)3x (2)4y (3)-2y
5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .
(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.
(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.
(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,
系数化为1,得y=-3.
6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.
(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,
系数化为1,得x=-10.
7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]
8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]
9.设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.
解这个方程,得x=7.
答:桶中原有油7千克.
[点拨:还有其他列法]
10.设应该从盘A内拿出盐x克,可列出表格:
盘A 盘B
原有盐(克) 50 45
现有盐(克) 50-x 45+x
设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.
解这个方程,得x=2.5,经检验,符合题意.
答:应从盘A内拿出盐2.5克放入到盘B内.
11.(1)设爸爸追上小明时,用了x分,由题意,得
180x=80x+80×5,
移项,得100x=400.
系数化为1,得x=4.
所以爸爸追上小明用时4分钟.
(2)180×4=720(米),1000-720=280(米).
所以追上小明时,距离学校还有280米.
12.(1)x=-
[点拨:由题意可列方程2x+8=6-2x,解得x=- ]
(2)x=-
[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]
13.∵ x=-2,∴x=-4.
∵方程 x=-2的根比方程5x-2a=0的根大2,
∴方程5x-2a=0的根为-6.
∴5×(-6)-2a=0,∴a=-15.
∴ -15=0.
∴x=-225.
14.本题开放,答案不唯一.
15.(1)设CE的长为x千米,依据题意得
1.6+1+x+1=2(3-2×0.5)
解得x=0.4,即CE的长为0.4千米.
(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),
则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);
若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),
则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).
故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).
收起