如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形最大正方姓边长7厘米怎么做求A.B.C.D的面积和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:40:52

如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形最大正方姓边长7厘米怎么做求A.B.C.D的面积和
如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形最大正方姓边长7厘米怎么做
求A.B.C.D的面积和

如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形最大正方姓边长7厘米怎么做求A.B.C.D的面积和
考点:勾股定理.
分析:先分别求出各正方形的面积,再根据勾股定理解答即可.
∵所有的三角形都是直角三角形,所有的四边形都是正方形,
∴正方形A的面积=a2,正方形B的面积=b2,
正方形C的面积=c2,正方形D的面积=d2,
又∵a2+b2=x2,c2+d2=y2,
∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.
点评:本题主要利用勾股定理进行推理,需注意应

∵所有的三角形都是直角三角形,所有的四边形都是正方形,
∴正方形A的面积=a2,正方形B的面积=b2,
正方形C的面积=c2,正方形D的面积=d2,
又∵a2+b2=x2,c2+d2=y2,
∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.点评:本题主要利用勾股定理进行推理,需注意应推理到已知条件....

全部展开

∵所有的三角形都是直角三角形,所有的四边形都是正方形,
∴正方形A的面积=a2,正方形B的面积=b2,
正方形C的面积=c2,正方形D的面积=d2,
又∵a2+b2=x2,c2+d2=y2,
∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.点评:本题主要利用勾股定理进行推理,需注意应推理到已知条件.

收起

2012-10-30 15:09suanshu123| 十五级从图上可看出
2个长与3个宽一个长的长度相等
推出一个长等于3个宽
一个长与一个宽就是3个宽与1个宽就是4个宽80厘米
宽80÷4=20厘米
长:20×3=60厘米

设小正方形的边长为x,
由大正方形的边长为5,所有的四边形都是正方形,所有的三角形都是直角三角形得,
2x2=25,则x2= ,即一个小正方形的面积为 ,
则A,B,C,D四个小正方形的面积之和等于 ×4=50.
故答案为:50.

这几个直角三角形的面积总和就等于这个最大正方形的面积:7×7=49

(2003•吉林)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49
49
cm2.考点:勾股定理.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.点...

全部展开

(2003•吉林)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49
49
cm2.考点:勾股定理.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.点评:熟练运用勾股定理进行面积的转换.

收起

考点:勾股定理.分析:先分别求出各正方形的面积,再根据勾股定理解答即可.∵所有的三角形都是直角三角形,所有的四边形都是正方形,
∴正方形A的面积=a2,正方形B的面积=b2,
正方形C的面积=c2,正方形D的面积=d2,
又∵a2+b2=x2,c2+d2=y2,
∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.点评:本题...

全部展开

考点:勾股定理.分析:先分别求出各正方形的面积,再根据勾股定理解答即可.∵所有的三角形都是直角三角形,所有的四边形都是正方形,
∴正方形A的面积=a2,正方形B的面积=b2,
正方形C的面积=c2,正方形D的面积=d2,
又∵a2+b2=x2,c2+d2=y2,
∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.点评:本题主要利用勾股定理进行推理,需注意应推理到已知条件.

收起

7*7=49,用勾股定理推会发现很简单

如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm, 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干个图形,使得他们的面积之和恰好等于最大的正方形面积,尝试给出两种以上的方案 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干个图形,使得他们的面积之和恰好等于最大的正方形面积,尝试给出两种以上的方案 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形最大正方姓边长7厘米怎么做求A.B.C.D的面积和 在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为10cm,正方形A的边长为6cm,正方形B和C的边长为5cm,则正方形D的边长是多少? 在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm正方形A,B,C的边长分别是6、5、5,则正方形D的边长错了是求D的周长 初二数学题——与勾股定理有关如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm,求正方形A、B、C、D的面积和.要求:规范的答题格式 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干个图形,使得它们的面积之和恰好等于最大的正方形面积,尝试给出两种以上的方案 如图所示的图形中 所有四边形都是正方形 所有三角形都是直角三角形 其中最大的正方形边长为七厘米 则如图所示的图形中 所有四边形都是正方形 所有三角形都是直角三角形 其中最大的正 图中所有的的四边形都是正方形,所有的三角形都是直角三角形.已知最大正方形M的边长是7,求正方形ABCD的面积之和 如图,所以的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干个图形,使得它们的面积之和恰好等于最大的正方形面积,参试给出两种以上的方案. 八年级上勾股定理1.求出下列直角三角形中未知边的长度2如图,所有的四边形都是正方形.所有的三角形都是直角三角形态,请在图中找出若干个图形.使得他们的面积之和恰好等于最大的正方形 图中所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形5号正方形面积为81cm^2,求A,B,C,D,的面积之和 如下图 所有的四边形都是正方形,给出方案 如图 所有的四边形都是正方形 所有的三角形都是直角三角形 如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm……如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 如图,所有的四边形都是正方形,所有的三角形都是直角三角形...如图,所有的四边形都是正方形,所有的三角形都是直角三角形,已知最大正方形M的边长7cm,求正方形A,B,C,D的面积之和  图 所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的...所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm(原图是10cm,不过要按7cm算),则正方