f(x)=asinx-bcosx(a,b为常数a≠0)在x=π/4处取得最小值,则函数y=f(3π/4-x)已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是()A.偶函数且它的图像关于点(π,0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:02:05

f(x)=asinx-bcosx(a,b为常数a≠0)在x=π/4处取得最小值,则函数y=f(3π/4-x)已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是()A.偶函数且它的图像关于点(π,0
f(x)=asinx-bcosx(a,b为常数a≠0)在x=π/4处取得最小值,则函数y=f(3π/4-x)
已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是()
A.偶函数且它的图像关于点(π,0)对称
B.偶函数且它的图像关于点(3π/2,0)对称
C.奇函数且它的图像关于点(3π/2,0)对称
D.奇函数且它的图像关于点(π,0)对称

f(x)=asinx-bcosx(a,b为常数a≠0)在x=π/4处取得最小值,则函数y=f(3π/4-x)已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是()A.偶函数且它的图像关于点(π,0
将已知函数变形f(x)=根号(a^2+b^2)sin(x-φ)
其中tanφ=b/a
又f(x)=asinx-bcosx在x=π/4处取得最小值
所以π/4-φ=3π/2 得φ=-5π/4
所以y=f(3π/4-x)=-sinx
选D

f(x)=asinx-bcosx=√(a²+b²)sin(x-α) f(x)=asinx+bcosx,当x=π/4时f(x)取得最大值,则b/a=? f(x)=asinx+bcosx,当x=π/4时f(x)取得最大值,则b/a=? f(x)=asinx+bcosx+1当f(π/2)=4且最大值为b.求a,b f(x)=asinx+bcosx,在x=π/3处取最大值求a,b比值 设f(x)=asinx+bcosx+c的图像经过点A(0,1)B(π/2,1),当0 函数f(x)=asinx-bcosx的图像的一条对称轴为直线x=π/4,则a+b=o,判断正确,需解析 函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处有最小值,则函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈r)在x=π/4处有最小值,则函数f(x+π/4)的奇偶性 已知函数f(x)=asinx+bcosx,求f(x)最大、最小值 已知函数f(x)=asinx+bcosx,求f(x)最大、最小值 f(x)=asinx+bcosx的几何意义 函数f(x)=asinx+bcosx,若f(π/4)=√2,f(x)的最大值是√10,求a,b的值 y=asinx+bcosx型的函数其规律为:y=asinx+bcosx=√(a^2+b^2)sin(x+φ)怎么推导的. 不定积分啊!f ' (e^x)=asinx+bcosx 求∫f(x)dx已知f ' (e^x)=asinx+bcosx 注:a、b是不同时为零的常数) 求∫f(x)dxx/2 [(a+b)sinx(lnx)+(b-a)cos(lnx)]偶令 e^x=t x=lnt f ' (t)=asin(lnt)+bcos(lnt) 再求∫f ' (t)dx 即求出f asinx+bcosx=√(a²+b²)sin(x+φ) φ是什么 已知函数f(x)=asinx+bcosx(a>0),f(4分之π)=根号2,且f(x)的最小值是负根号10,求a,b的值及函数的解析式 已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)已知函数f(x)=asinx-bcosx(a.b常数,a不等于0,x属于R)在x=pai/4处取得最小值,则函数y=f(3pai/4 -x)是( ) A.偶函数且它 已知实数a,b满足a²+b²-4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为T(a,b),则T(a,b)的最小值为?