(2012·兰州)已知x是一元二次方程x²-2x+1=0的根,求代数式(x-3)/(3x²-6x)÷[x+2-(5/x-2)]的值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:20:30
(2012·兰州)已知x是一元二次方程x²-2x+1=0的根,求代数式(x-3)/(3x²-6x)÷[x+2-(5/x-2)]的值.
(2012·兰州)已知x是一元二次方程x²-2x+1=0的根,求代数式(x-3)/(3x²-6x)÷[x+2-(5/x-2)]的值.
(2012·兰州)已知x是一元二次方程x²-2x+1=0的根,求代数式(x-3)/(3x²-6x)÷[x+2-(5/x-2)]的值.
x²-2x+1=0
(x-1)²=0
x1=x2=1
[(x-3)/(3x²-6x)] ÷ [(x+2)-5/(x-2)]
={(x-3)/[3x(x-2)]} ÷ {[(x+2)(x-2)-5]/(x-2)}
= {(x-3)/[3x(x-2)]} × {(x-2)/(x+3)(x-3)}
=1/[3x(x+3)]
因此:
带入x1=x2=1,则:
[(x-3)/(3x²-6x)] ÷ [(x+2)-5/(x-2)]
=1/[3x(x+3)]
=1/12
x²-2x+1=0(x-1)²=0x1=x2=1[(x-3)/(3x²-6x)] ÷ [(x+2)-5/(x-2)]={(x-3)/[3x(x-2)]} ÷ {[(x+2)(x-2)-5]/(x-2)}= {(x-3)/[3x(x-2)]} × {(x-2)/(x+3)(x-3)}=1/[3x(x+3)]因此:带...
全部展开
x²-2x+1=0(x-1)²=0x1=x2=1[(x-3)/(3x²-6x)] ÷ [(x+2)-5/(x-2)]={(x-3)/[3x(x-2)]} ÷ {[(x+2)(x-2)-5]/(x-2)}= {(x-3)/[3x(x-2)]} × {(x-2)/(x+3)(x-3)}=1/[3x(x+3)]因此:带入x1=x2=1sw则:[(x-3)/(3x²-6x)] ÷ [(x+2)-5/(x-2)]=1/[3x(x+3)]=1/12 祝学习进步
收起