有两个正数数列an,bn,对任意正整数n,有an,bn,an+1成等比数列,bn,an+1,bn+1成等差数列,若a1=1,b1=2,猜想数列an,bn的通项公式,并用数学归纳法证明.各位只要告诉我通项怎么求就好了,证明我自己来,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:39:28
有两个正数数列an,bn,对任意正整数n,有an,bn,an+1成等比数列,bn,an+1,bn+1成等差数列,若a1=1,b1=2,猜想数列an,bn的通项公式,并用数学归纳法证明.各位只要告诉我通项怎么求就好了,证明我自己来,
有两个正数数列an,bn,对任意正整数n,有an,bn,an+1成等比数列,bn,an+1,bn+1成等差数列,若a1=1,b1=2,猜想数列an,bn的通项公式,并用数学归纳法证明.
各位只要告诉我通项怎么求就好了,证明我自己来,
有两个正数数列an,bn,对任意正整数n,有an,bn,an+1成等比数列,bn,an+1,bn+1成等差数列,若a1=1,b1=2,猜想数列an,bn的通项公式,并用数学归纳法证明.各位只要告诉我通项怎么求就好了,证明我自己来,
题目都说是猜了
所以先找规律
a1=1 b1=2
an,bn,an+1成等比数列
a2=4
bn,an+1,bn+1成等差数列
b2=6
依次得到
a3=9 b3=12
a4=16 b4=20
...
可以看出an=n^2 bn=n(n+1)
{an},{bn}都是各项为正数的数列,对任意n∈正整数,{an},{bn}都是各项为正数的数列,对任意n∈正整数,都有an,(bn)^2,a(n+1)成等差数列,(bn)^2,a(n+1),(b(n+1))^2成等比数列,(1)问{bn}是否为等差数列?为什么?
有两个正数数列an,bn,对任意正整数n,有an,bn,an+1成等比数列,bn,an+1,bn+1成等差数列,若a1=1,b1=2,猜想数列an,bn的通项公式,并用数学归纳法证明.各位只要告诉我通项怎么求就好了,证明我自己来,
正整数列{an},{bn}满足对任意正整数n,an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,证明:数列{根号bn}成等差数列
{a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,bn+1^2成等比{a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,bn+1^2成等比数列
数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=(4+an)/(1-an)(n是正整数)求数列{bn}的通项公式
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N+,总有an,Sn,an^2成等差数列,设数列{bn}的前n项和为Tn,且bn=(lnx)^n /an^2,则对任意实数x∈(1,e]和任意正数n,Tn小于的最小正整数是多少A1 B2 C3 D4
数列an的各项均为正数,sn为其前n项和,对于任意的n∈N*,总有an,sn,an^2成等差数列.(1)求数列an的通项公式.(2)设数列bn的前n项和为Tn,且bn=lnx/an^2,求证:对任意的实数x∈(1,e]和任意的正整数n,总
设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,设bn=(4+an)/(1-an)(n∈N+)(1)求数列{an}与数列{bn}的通项公式(2)设数列(bn)的前n项和为Rn,求证:对任意正整数K,都有Rn
已知数列{an}{bn},对任意正整数N,都有:a1bn+a2bn-1+a3bn-2+……+an-1b2+anb1=2^n+1-n-2已知数列{an}{bn},对任意正整数N,都有:a1bn+a2bn-1+a3bn-2+……+an-1b2+anb1=2^(n+1)-n-21、若数列{an}是首项和公差都是1
已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通项公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果对任
已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n (1)设bn=an-1,求证:数列{bn}是等比数列
已知【an】是递增数列,且对任意n是正整数,都有an=n^2+bn恒成立,则实数b的取值范围是
已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n (1)设bn=an-1,求证:数列{bn}是等比...已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n(1)设bn=an-1,求证:数列{bn}是
设数列an前n项和为sn,对任意正整数nh,都有an=5sn+1,记bn=(4+an)/(1-an),(1)求an与bn的通项公式;(2)设bn前n项和为Rn,是否存在正数k,使得Rn>=4k成立?若存在,找出一个正整数k,若不存在,说明理由;(3)记cn=b(2n)
设各项均为正数的无穷数列{an}{bn}满足:对任意n属于正整数都有2bn=an+a(n+1)且a(n+1)的平方=bn乘以b(n+1),求证:{根号下bn}是等差数列设a1=1,a2=2,求{an}和{bn}的通项公式别复制以前的、就
已知各项均为正数的数列{an}中,a1=1,sn是数列{an}的前n项的和对任意n属于正整数有2Sn=2pan^2+pan-p p是实求常数p 的值求数列{an}的通项公式记bn=(4sn/n+3)*2^n,求数列{bn}的前n项和Tn
一道数学题(等差数列)设各项均为正数的无穷数列{an}和{bn}满足:对任意n属于N8,都有2bn=an乘以an+1,且a^2 n+1=bn乘以bn+1求证:{根号bn}是等差数列求思路!设各项均为正数的无穷数列{a[n]}和{b[n]}
数列an,bn各项均为正数,对任意n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列证数列根号BN成等差数列