化学所有知识点及公式,附件也可以

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:40:54

化学所有知识点及公式,附件也可以
化学所有知识点及公式,附件也可以

化学所有知识点及公式,附件也可以
不知道你们学哪一本,一般是学选修4《化学反应原理》,方程式比较少,但是公式及知识点很多,盐类水解是难点
知识点总结
第一章:化学反应与能量变化
1、反应热与焓变:△H=H(产物)-H(反应物)
2、反应热与物质能量的关系
3、反应热与键能的关系
△H=反应物的键能总和-生成物的键能总和
4、常见的吸热、放热反应
⑴常见的放热反应:
①活泼金属与水或酸的反应 ②酸碱中和反应 ③燃烧反应 ④多数的化合反应⑤铝热反应
⑵常见的吸热反应
①多数的分解反应 ②2NH4Cl(s)+Ba(OH)2·8H2O(s)=BaCl2+2NH3+10H2O
③ C(s)+ H2O(g) CO+H2 ④CO2+ C2 CO
5、反应条件与吸热、放热的关系:反应是吸热还是放热与反应的条件没有必然的联系,而取决与反应物和产物具有的总能量(或焓)的相对大小.
6、书写热化学方程式除了遵循书写化学方程式的要求外,还应注意以下几点:
①放热反应△H为“-”,吸热反应△H为“+”,△H的单位为kJ/mol
②反应热△H与测定条件(温度、压强等)有关,因此应注意△H的测定条件;绝大多数化学反应的△H是在298K、101Pa下测定的,可不注明温度和压强.
③热化学方程式中各物质化学式前面的系数仅表示该物质的物质的量,并不表示物质的分子或原子数,因此化学计量数可以是分数或小数.必须注明物质的聚集状态,热化学方程式是表示反应已完成的数量,所以方程式中化学式前面的计量数必须与△H相对应;当反应逆向进行时,反应热数值相等,符号相反.
7、利用盖斯定律进行简单的计算
8、电极反应的书写: 活性电极:电极本身失电子
⑴电阳极:(与电源的正极相连)发生氧化反应 惰性电极:溶液中阴离子失电子
(放电顺序:I->Br->Cl->OH-)
阴极:(与电源的负极相连)发生还原反应,溶液中的阳离子得电子
(放电顺序:Ag+>Cu2+>H+)
注意问题:①书写电极反应式时,要用实际放电的离子来表示
②电解反应的总方程式要注明“通电”
③若电极反应中的离子来自与水或其他弱电解质的电离,则总反应离子方程式中要用化学式表示
⑵原电池:负极:负极本身失电子,M→Mn+ +ne-
① 溶液中阳离子得电子 Nm++me-→N
正极: 2H++2e-→H2↑

②负极与电解质溶液不能直接反应:O2+4e-+2H2O→4OH- (即发生吸氧腐蚀)
书写电极反应时要注意电极产物与电解质溶液中的离子是否反应,若反应,则在电极反应中应写最终产物.
9、电解原理的应用:
⑴氯碱工业:阳极(石墨):2Cl-→Cl2+2e-( Cl2的检验:将湿润的淀粉碘化钾试纸靠近出气口,试纸变蓝,证明生成了Cl2).
阴极:2H++2e-→H2↑(阴极产物为H2、NaOH.现象(滴入酚酞):有气泡逸出,溶液变红).
⑵铜的电解精炼:电极材料:粗铜做阳极,纯铜做阴极.电解质溶液:硫酸酸化的硫酸铜溶液
⑶电镀:电极材料:镀层金属做阳极(也可用惰性电极做阳极),镀件做阴极.电解质溶液是用含有镀层金属阳离子的盐溶液.
10、化学电源
⑴燃料电池:先写出电池总反应(类似于可燃物的燃烧);
再写正极反应(氧化剂得电子,一般是O2+4e-+2H2O→4OH-(中性、碱性溶液)
O2+4e-+4H+→2H2O(酸性水溶液).负极反应=电池反应-正极反应(必须电子转移相等)
⑵充放电电池:放电时相当于原电池,充电时相当于电解池(原电池的负极与电源的负极相连,做阴极,原电池的正极与电源的正极相连,做阳极),
11、计算时遵循电子守恒,常用关系式:2 H2~ O2~2Cl2~2Cu~4Ag~4OH-~4H+~4e-
12、金属腐蚀:电解阳极引起的腐蚀>原电池负极引起的腐蚀>化学腐蚀>原电池正极>电解阴极
钢铁在空气中主要发生吸氧腐蚀.负极:2Fe→2Fe 2++4e- 正极:O2+4e-+2H2O→4OH-
总反应:2Fe + O2+2H2O=2Fe(OH)2
第二章:化学反应的方向、限度和速度
1、反应方向的判断依据:△H-T△S0反应不能自发.该判据指出的是一定条件下,自发反应发生的可能性,不能说明实际能否发生反应(计算时注意单位的换算)课本P40T3
2、化学平衡常数:
①平衡常数的大小反映了化学反应可能进行的程度,平衡常数越大,说明反应进行的越完全.②纯固体或纯溶剂参加的反应,它们不列入平衡常数的表达式
③平衡常数的表达式与化学方程式的书写方式有关,单位与方程式的书写形式一一对应.对于给定的化学反应,正逆反应的平衡常数互为倒数
④化学平衡常数受温度影响,与浓度无关.温度对化学平衡的影响是通过影响平衡常数实现的.温度升高,化学平衡常数增大还是减小与反应吸放热有关.
3、平衡状态的标志:①同一物质的v正=v逆 ②各组分的物质的量、质量、含量、浓度(颜色)保持不变 ③气体的总物质的量、总压强、气体的平均分子量保持不变只适用于△vg≠0的反应④密度适用于非纯气体反应或体积可变的容器
4、惰性气体对化学平衡的影响
⑴恒压时充入惰性气体,体积必增大,引起反应体系浓度的减小,相当于减压对平衡的影响
⑵恒容时充入惰性气体,各组分的浓度不变,速率不变,平衡不移动
⑶对于△vg=0的可逆反应,平衡体系中加入惰性气体,恒容、恒压下平衡都不会移动
5、⑴等效平衡:①恒温恒压,适用于所有有气体参加的可逆反应,只要使转化后物质的量之比与最初加入的物质的量之比相同,均可达到等效平衡;平衡时各组分的百分含量相同,浓度相同,转化率相同.
②恒温恒容,△vg=0的反应,只要使转化后物质的量之比与最初加入的物质的量之比相同,均可达到等效平衡;平衡时各组分的百分含量相同,转化率相同.
⑵等同平衡:恒温恒容,适用于所有有气体参加的可逆反应,只要使转化后物质的量与最初加入的物质的量相同,均可达到等同平衡;平衡时各组分的物质的量相同,百分含量相同,浓度相同.
6、充气问题:以aA(g)+bB(g)cC(g)
⑴只充入一种反应物,平衡右移,增大另一种反应物的转化率,但它本身的转化率降低
⑵两种反应物按原比例充,恒容时相当于加压,恒压时等效平衡
⑶初始按系数比充入的反应物或只充入产物,平衡时再充入产物,恒容时相当于加压,恒压时等效平衡
化学反应速率: 速率的计算和比较;浓度对化学速率的影响(温度、浓度、压强、催化剂); V-t图的分析
第三章 物质在水溶液中的行为
1、强弱电解质:
⑴强电解质:完全电离,其溶液中无溶质分子,电离方程式用“=”,且一步电离;强酸、强碱、大多数盐都属于强电解质.
⑵弱电解质:部分电离,其溶液中存在溶质分子,电离方程式用“”,多元弱酸的电离方程式分步写,其余的弱电解质的电离一步完成;弱酸、弱碱、水都是弱电解质.
⑶常见的碱:KOH、NaOH、Ca(OH)2、Ba(OH)2是强碱,其余为弱碱;
常见的酸:HCl、HBr、HI、HNO3、H2SO4是强酸,其余为弱酸;
注意:强酸的酸式盐的电离一步完成,如:NaHSO4=Na++H++SO42-,而弱酸的酸式盐要分步写,如:NaHCO3=Na++HCO3-, HCO3- CO32- +H+
2、电离平衡
⑴ 电离平衡是平衡的一种,遵循平衡的一般规律.温度、浓度、加入与弱电解质相同的离子或与弱电解质反应的物质,都会引起平衡的移动
⑵ 电离平衡常数(Ka或Kb)表征了弱电解质的电离能力,一定温度下,电离常数越大,弱电解质的电离程度越大.Ka或Kb是平衡常数的一种,与化学平衡常数一样,只受温度影响.温度升高,电离常数增大.
3、水的电离:
⑴ H2OH++OH-,△H>0.升高温度、向水中加入酸、碱或能水解的盐均可引起水的电离平衡的移动.
⑵ 任何稀的水溶液中,都存在,且[H+]·[OH-]是一常数,称为水的离子积(Kw);Kw是温度常数,只受温度影响,而与H+或OH-浓度无关.
⑶ 溶液的酸碱性是H+与OH- 浓度的相对大小,与某一数值无直接关系.
⑷ 当溶液中的H+ 浓度≤1mol/L时,用pH表示.
无论是单一溶液还是溶液混合后求pH,都遵循同一原则:若溶液呈酸性,先求c(H+);若溶液呈碱性,先求c(OH-),由Kw求出c(H+),再求pH.
⑸向水中加入酸或碱,均抑制水的电离,使水电离的c(H+)或c(OH-)10-7mol/L,如某溶液中水电离的c(H+)=10-5mol/L,此时溶液为酸性,即室温下,pH=5,可能为强酸弱碱盐溶液.
4、盐的水解
⑴在溶液中只有盐电离出的离子才水解.本质是盐电离出的离子与水电离出H+或OH-结合生成弱电解质,使H+或OH-的浓度减小,从而促进水的电离.
⑵影响因素:①温度:升温促进水解 ②浓度:稀释促进水解 ③溶液的酸碱性④ 同离子效应
⑷水解方程式的书写:
①单个离子的水一般很微弱,用,产物不标“↑”“↓”;多元弱酸盐的水解方程式要分步写
②双水解有两种情况:Ⅰ水解到底,生成气体、沉淀,用=,标出“↑”“↓”.
Ⅱ部分水解,无沉淀、气体,用,产物不标“↑”“↓”;
⑸ 盐类水解的应用:①判断溶液的酸碱性 ②判断盐溶液中的离子种类及其浓度大小 ③判断离子共存 ④加热浓缩或蒸干某些盐溶液时产物的判断,如AlCl3溶液 ⑤某些盐溶液的保存与配制,如FeCl3溶液 ⑥某些胶体的制备,如Fe(OH)3胶体 ⑦解释生产、生活中的一些化学现象,如明矾净水、化肥的施用等.(解释时规范格式:写上对应的平衡-----条件改变平衡移动-----结果)
5、沉淀溶解平衡:
⑴ Ksp:AmBnmAn++nBm-,Ksp=[An+]m[Bm-]n.
①Ksp只与难溶电解质的性质和温度有关,溶液中离子浓度的变化只能使平衡移动,不改变Ksp.②对于阴阳离子个数比相同的电解质,Ksp越大,电解质在水中的溶解能力越强.
⑵ Q>Ksp,有沉淀生成;Q=Ksp,沉淀与溶解处于平衡状态;Q