AX=O的系数矩阵A式一个n阶矩阵,如果丨A丨=0,而a11的代数余子式A11不等于0,则该方程组的基础解析所含解向量的个数为多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:32:30

AX=O的系数矩阵A式一个n阶矩阵,如果丨A丨=0,而a11的代数余子式A11不等于0,则该方程组的基础解析所含解向量的个数为多少
AX=O的系数矩阵A式一个n阶矩阵,如果丨A丨=0,而a11的代数余子式A11不等于0,则该方程组的基础解析所含解向量的个数为多少

AX=O的系数矩阵A式一个n阶矩阵,如果丨A丨=0,而a11的代数余子式A11不等于0,则该方程组的基础解析所含解向量的个数为多少
A有n-1阶余子式不等于0(|A11|≠0)说明A的秩r(A)>=n-1;又|A|=0;所以;
r(A)=n-1;AX=O的基础解系所含解向量个数为n-r(A)=1

AX=O的系数矩阵A式一个n阶矩阵,如果丨A丨=0,而a11的代数余子式A11不等于0,则该方程组的基础解析所含解向量的个数为多少 求证一个关于矩阵的问题如果A 是一个m*n的矩阵 且Ax=0 适用于所有x属于R^n求证A=0 逆矩阵定义问题对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则说矩阵A是可逆的,并把B矩阵称为A的逆矩阵.如果AB=E或BA=E单一成为而不是这AB=BA=E.那能不能说B矩阵称为A的逆矩阵? 设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,使得A=P(Er O)Q(O O)是一个大括号 几个高代判断题1、A是m*n矩阵,若秩(A)=0,则A=02、如果n阶矩阵A经出的变换可化为对角矩阵B,则A与B相似3、齐次线性方程有非零解的充要条件是,系数矩阵的秩小于方程的个数4、设A,B都是m*n矩阵, 分块矩阵问题.矩阵 (O AB O) 的逆矩阵怎么求?A是n阶矩阵 B是s阶矩阵 A B都可逆 相似矩阵和合同矩阵是不是对角矩阵合同矩阵式一定是对角矩阵吧,那相似矩阵是不这样说就是实对称的合同矩阵与相似矩阵是不是对角矩阵 如果普通n阶矩阵A,的相似矩阵与合同矩阵又是不 设AX=0是n元齐次线性方程组,若系数矩阵A的秩r(A)=r 矩阵,线性方程的一个简单题目若使X1=(1,0,1)的转置矩阵,X2=(-2,0,1)的转置矩阵,都是线性方程组AX=0的解,那么系数矩阵A是多少?求教 如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵 证明:如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵. A是m*n矩阵,B是n*s矩阵,X是n*1矩阵,证明AB=O的充要条件是B的每一列都是齐次方程组AX=O的解 对称矩阵与反对称矩阵证明问题证明:如果A是一个n*n的标量矩阵,A可以被写成A=S+K,此时S是对称矩阵而K是反对称矩阵证明:如果A是一个n*n的矩阵,A可以被写成A=S+K,此时S是对称矩阵而K是反 有关线性数学 矩阵的特征值 的例子矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值非零n维列向量x称为矩阵A的属于(对应于)特 两方程组同解的充要条件是系数矩阵有相同的秩A,B是两个m*n矩阵,AX=0和BX=0是齐次线性方程组,那么这两个方程组同解的充要条件是它们系数矩阵等价.如果以上两个方程组换成非齐次线性方程 如果矩阵A是一个m x n 的矩阵时,矩阵A的列向量是几维的? matlab 解矩阵 已知A是n*n矩阵,X和Y是n*m矩阵,其中,X,Y已知,Y=AX.现在求系数矩阵A,求大侠帮助. 设A是n阶整数矩阵,求证:矩阵方程Ax=0.5x必无解