(^2是平方)已知动圆C过点A(-2,0),且与圆M:(x-2)^2+y^2=64相内切.求动圆的圆心C的轨迹方程定圆M圆心M(2,0),半径r=8,因为动圆C与定圆M内切,且动圆C过定点A(-2,0)|MA|+|MB|=8.所以动圆心C轨迹是以B、A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:31:51
(^2是平方)已知动圆C过点A(-2,0),且与圆M:(x-2)^2+y^2=64相内切.求动圆的圆心C的轨迹方程定圆M圆心M(2,0),半径r=8,因为动圆C与定圆M内切,且动圆C过定点A(-2,0)|MA|+|MB|=8.所以动圆心C轨迹是以B、A
(^2是平方)已知动圆C过点A(-2,0),且与圆M:(x-2)^2+y^2=64相内切.求动圆的圆心C的轨迹方程
定圆M圆心M(2,0),半径r=8,
因为动圆C与定圆M内切,且动圆C过定点A(-2,0)
|MA|+|MB|=8.
所以动圆心C轨迹是以B、A为焦点,长轴长为8的椭圆.
C=2,a=4,b^2=12,
动圆心轨迹方程x^2/16+y^2/12=1
a=4,请问是怎么来的?
(^2是平方)已知动圆C过点A(-2,0),且与圆M:(x-2)^2+y^2=64相内切.求动圆的圆心C的轨迹方程定圆M圆心M(2,0),半径r=8,因为动圆C与定圆M内切,且动圆C过定点A(-2,0)|MA|+|MB|=8.所以动圆心C轨迹是以B、A
已知动圆C过点A(-2,0),且与圆M:(x-2)²+y²=64相内切.求动圆的圆心C的轨迹方程
定园M的园心M(2,0),半径R=8;动园C的园心C(x,y)与定园相切于E,且过定点A(-2,0);
则M,C,E,三点在园M的同一条半径上,故∣ME∣=∣CE∣+∣CM∣=∣CA∣+∣CM∣=8
即动园园心C到两定点(焦点)A(-2,0)和M(2,0)的距离和为一定值8,故动点C的轨迹是椭圆,且2a=8,即a=4;2c=∣AM∣=4,故c=2,b²=a²-c²=16-4=12,于是得动点C的轨迹方程为:
x²/16+y²/12=1.
所求曲线上一点 M 到两个定点 A、B 的距离之和为 |MA|+|MB|=8 ,
这个 8 就是椭圆中的 2a ,所以 a=4 。
A在圆M内部
所以圆C圆M的圆收距等于两圆的半径的差
设圆C圆心(x,y)则
√[(x-2)^2+y^2]=8-√[(x+2)^2+y^2]
移项得
√[(x-2)^2+y^2]+√[(x+2)^2+y^2]=8
根据椭圆定义得,所求方程为
x^2/16+y^2/12=1 定圆M圆心M(2,0),半径r=8,
因为动圆C与定圆M内切,...
全部展开
A在圆M内部
所以圆C圆M的圆收距等于两圆的半径的差
设圆C圆心(x,y)则
√[(x-2)^2+y^2]=8-√[(x+2)^2+y^2]
移项得
√[(x-2)^2+y^2]+√[(x+2)^2+y^2]=8
根据椭圆定义得,所求方程为
x^2/16+y^2/12=1 定圆M圆心M(2,0),半径r=8,
因为动圆C与定圆M内切,且动圆C过定点A(-2,0)
|MA|+|MB|=8.
所以动圆心C轨迹是以B、A为焦点,长轴长为8的椭圆.
C=2,a=4,b^2=12,
动圆心轨迹方程x^2/16+y^2/12=1如有帮助望采纳
收起
设圆心(x,y)半径r
(-2-x)²+y²=r² (1)
(x-2)²+y²=(r-8)² (2)
二式相减得8x=16r-64
即r=(x+8)/2
代入(1)得
(-2-x)²+y²=((x+8)/2)²
x²+4x+4+y²=(x²+16x+64)/4
整理得x²/16+y²/12=1