已知x>2,求函数y=(2x^2-8x+16)/(x^2-2x+4)的值域.用均值不等式解答,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:28:41

已知x>2,求函数y=(2x^2-8x+16)/(x^2-2x+4)的值域.用均值不等式解答,
已知x>2,求函数y=(2x^2-8x+16)/(x^2-2x+4)的值域.
用均值不等式解答,

已知x>2,求函数y=(2x^2-8x+16)/(x^2-2x+4)的值域.用均值不等式解答,
y=(2x^2-8x+16)/(x^2-2x+4)
=2+(8-4x)/(x^2-2x+4)
=2+4/[(x^2-2x+4)/(2-x)]
=2-4/{[x(x-2)+4]/(x-2)}
=2-4/[x+4/(x-2)]
=2-4/[x-2+2+4/(x-2)]
=2-4/[x-2+4/(x-2)+2]
>=2-4/{[(2√(x-2)*4/(x-2)]+2}
=4/3
故值域为【2/3,+∞】