已知x,y,z为非负实数,x+y+z=1,求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥ 0并指出等号成立的条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:17:40

已知x,y,z为非负实数,x+y+z=1,求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥ 0并指出等号成立的条件
已知x,y,z为非负实数,x+y+z=1,求证:
x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥ 0
并指出等号成立的条件

已知x,y,z为非负实数,x+y+z=1,求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥ 0并指出等号成立的条件
这提一点都不难啊,稍作变换,然后用算数不等式与几何不等式的关系就证明了.要用这个公式降次
x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)
原来没仔细想,只是心算了一把,以为证明了.真的证明起来,发现不是很简单,要用到一个基本不等式,x,y,z为非负实数,
x(x-y)(x-z) + y(y-z)(y-x)+z(z-x)(z-y) ≥ 0
这个不等式的英文名字是Schur不等式,证明不难.
由Schur不等式可以直接得出
x^3+y^3+z^3 +3xyz ≥ x^2(y+z) + y^2(z+x) + z^2(x+y)
当x+y+z=1时,可以得到
2(x^3+y^3+z^3) +3xyz ≥ x^2+y^2+z^2
下面开始证明你的问题.
原式左边
= 6(x^3+y^3+z^3) - 5(x^2+y^2+z^2) + 1
= 4(x^3+y^3+z^3) +6 xyz + 2(x^3+y^3+z^3) - 6xyz - 5(x^2+y^2+z^2) + 1
= 4(x^3+y^3+z^3) +6 xyz +2 (x+y+z)(x^2+y^2+z^2-xy-yz-zx) - 5(x^2+y^2+z^2) + 1
= 4(x^3+y^3+z^3) +6 xyz -3(x^2+y^2+z^2) -2 (xy + yz+ zx) + 1
≥ 2(a^2+b^2+c^2) -3(x^2+y^2+z^2) -2 (xy + yz+ zx) + 1
= -(x^2+y^2+z^2) -2 (xy + yz+ zx) +1
= 1-(x+y+z)^2
= 0
证出来啦.你要玩数学竞赛,Schur不等式 ,Cauchy 不等式这一类基本不等式 是必须掌握的.

已知x,y,z为非负实数,p=-3x+y+2z,q=x-2y+4z,x+y+z=1,则点(p,q)的活动范围是 已知x,y,z为非负实数,p=-3x+y+2z,q=x-2y+4z,x+y+z=1,求p^2+q^2的最大值 已知x,y,z为非负实数.已知x,y,z为非负实数,p=-3x+y+2z,q=x-2y+4z,x+y+z=1,求p-q的最大值和最小值. 已知非负实数x,y,z满足x+y+z=3 (2),求证x^2/(1+x^4)+y^2/(1+y^4)+z^2/(1+z^4)≤1/(1+x)+1/(1+y)+1/(1+z) x,y,z为非负实数,x+y+z=1,求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)>=0 已知,X.Y.Z是三个非负实数,满足3X+2Y+Z=5,X+Y-Z=2若S=2X+Y-Z,则S的最大值和最小值和为多少?为什么? 已知x,y,z,为非负实数,且满足x+y+z=30,3x+y-z=50 求 u=5x+4y+2z的最大值和最小值 已知:x+y+z=30,3x+y-z=50,x,y,z均为非负实数,则M=5x+4y+2z的取值范围是多少 已知x,y,z,为非负实数,且满足x+y+z=30,3x+y-z=50 求 u=5x+4y+2z的最大值和最小值 已知x,y,z为非零实数,且满足x+y-z/z=y+z-x/x=z+x-y/y 求x+y+z/z的值 一道数学难题已知四个非负实数x,y,z,u,满足3x+2y+z=6,2x+y-3u=1,则S=6u-z+1的最大值为 已知实数X.Y.Z满足(Y+Z)分之X+(Z+X)分之Y+(X+Y)分之Z=1,则(Y+Z)分之X平方+(Z+X)分之Y平方+(X+Y)分之Z平方的值为( ) 已知x,y,z为非负实数,x+y+z=1,求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥ 0并指出等号成立的条件 非负实数X、Y、Z满足条件:XY+YZ+XZ=1,求证:1/(X+Y)+1/(Y+Z)+1/(X+Z) 已知x,y,z为非负有理数,且满足3x+2y+z=5,2x+y-3z=1,若S=3x+y-7z,求S的最大值和最小值 已知X Y Z为非负有理数,且满足3X+2Y+Z=5,2X+Y-3Z=1,若S=3X+Y-7Z,求S的最大值和最小值 已知,x,y,z是三个非负实数,满足3x+2y+z=5,z+y-z=2若s=2x+y-z,则s最大值与最小值的和是多少 已知非负实数x,y,z,w满足x2+y2+z2+w2+x+2y+3z+4w=17/2,那么x+y+z+w的最大值与最小值分别为( ).