设f(x)=x×x+Px+Q,A={X│X=f(x)},B={x│f[f(x)]=x}.(1)求证:A∈B;(2)如果A={-1,3},求B.希望大家尽快在今天下午给出答案,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:22:55

设f(x)=x×x+Px+Q,A={X│X=f(x)},B={x│f[f(x)]=x}.(1)求证:A∈B;(2)如果A={-1,3},求B.希望大家尽快在今天下午给出答案,
设f(x)=x×x+Px+Q,A={X│X=f(x)},B={x│f[f(x)]=x}.
(1)求证:A∈B;
(2)如果A={-1,3},求B.
希望大家尽快在今天下午给出答案,

设f(x)=x×x+Px+Q,A={X│X=f(x)},B={x│f[f(x)]=x}.(1)求证:A∈B;(2)如果A={-1,3},求B.希望大家尽快在今天下午给出答案,
A集中元素满足x=f(x)
所以f(x)=f[f(x)]
所以x=f[f(x)]
即A集中元素也属于B集中
所以A属于B
A={-1,3}代入方程得
-1=1-p+q
3=9+3p+q
记得p=-1 q=-3
所以f(x)=x^2-x-3
x=f[f(x)]
(x^2-x-3)=(x^2-x-3)^2-(x^2-x-3)-3
(x^2-x-3)^2-2(x^2-x-3)-3=0
(x^2-x-3-3)(x^2-x-3+1)=0
(x-3)(x+2)(x-2)(x+1)=0
x=3 2 -1 -2
所以B={-2,-1,2,3}

(1).设a∈A,则f(a)=a,因此f[f(a)]=f[a]=a,a∈B,所以A包含于B.
(2).A={-1,3},f(x)=x^2+px+q=x有根x=-1,x=3,
f(x)=[f(x)-x]+x=(x+1)(x-3)+x=x^2-x-3.
f[f(x)]-x=(x^2-x-3)^2-(x^2-x-3)-3-x=x^4-2x^3-6x^2+6x+9.
由(1...

全部展开

(1).设a∈A,则f(a)=a,因此f[f(a)]=f[a]=a,a∈B,所以A包含于B.
(2).A={-1,3},f(x)=x^2+px+q=x有根x=-1,x=3,
f(x)=[f(x)-x]+x=(x+1)(x-3)+x=x^2-x-3.
f[f(x)]-x=(x^2-x-3)^2-(x^2-x-3)-3-x=x^4-2x^3-6x^2+6x+9.
由(1),f[f(x)]-x有根x=-1,x=3,{f[f(x)]-x}/{(x+1)(x-3}=x^2-3,
f[f(x)]-x=0还有根x=±√3,
所以,B={-1,3,√3,-√3}.

收起