设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx∫^(0,1)代表的是(0,1)区间上的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:24:59

设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx∫^(0,1)代表的是(0,1)区间上的积分
设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx
∫^(0,1)代表的是(0,1)区间上的积分

设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx∫^(0,1)代表的是(0,1)区间上的积分
用分部积分法.
∫^(0,1)x(1-x)f"(x)dx (u= x(1-x) v'= f''(x) u' =1-2x v= f'(x)
=[x(1-x) f'(x) ] (0,1) - ∫^(0,1)(1-2x)f'(x)dx 再设u1= 1-2x v1 = f'(x) (u1)' =-2 (v1)'= f(x)
= 0 - (1- 2x) f(x) (0,1) - 2 ∫^(0,1)f(x)dx
=f(1) +f(0) -2 ∫^(0,1)fx)dx
移项,整理即得::∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)
其中:[x(1-x) f'(x) ] (0,1) 表示:函数[x(1-x) f'(x) ] 在x=1的值减去它在 x=0的值.另处类似.

|f(1)-f(0)|+0.5A(x^2+(1-x)^2)<=|f(1)-f(0)|+0.5A,最后不等式是因为二次函数x^2+(1-x)^2在【0 1】上的最大值是1

设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)| 设f(x)在[0,1]上具有二阶连续导数,且|f''(x)| 设f(x)在[0,1]上有连续导数,f(0)=0,0 设f(x)在[0,1]上有连续导数,f(0)=0,0 设f(x)在[0,1]上有连续一阶导数,在(0,1)内二阶可导. 设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明 设f(x)在[0,1]上有二阶连续导数,证明:∫ (-1,2)f(x)dx=1/2[f(1)+f(2)]-1/2∫(1,2)(2-x)(x-1)f(x)dx 设函数f(x)在[0,1]有二阶连续导数 求 ∫(0积到1)[2f(x)+x(1-x)f''(x)]dxRT 设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt 设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt 设f(x)在[0,1]上有二阶连续导数,证明:∫(-1,2)f(x)dx=1/2[f(1)+f(2)]-1/2∫(1,2)(2-x)(x-1)f(x)dx设f(x)在[0,1]上有二阶连续导数,证明:∫ (-1,2)f(x)dx=1/2[f(1)+f(2)]-1/2∫(1,2)(2-x)(x-1)f(x)dx 导数连续问题设函数f(x)=x^ksin(1/x) ,x不等于0 (k为整数) 0 ,x=0 问k满足什么条件,f(x)在x=0处导数连续 设f(x)在x=1处具有连续导数,且f ‘(1)=3,求f '(cos√x),x趋近于0+ 设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明: 设f(x)在区间[a,b]上连续,且f(x)>0,证明 f(x)在[a,b]上的导数 乘 1/f(x)在[a,b]上的导数 >=(b-a)的平方 设f(x)=xg(x),其中g(x)在x=0处连续,且g(0)=1,试用导数定义求f'(0). 积分应用 设f (x)在[0,1]上具有二阶连续导数,若f ( π ) = 2,∫ [ f (x)+ f (x)的二阶导数]sin xdx =5,求f (0) .. 设f(x)在x=1处具有连续的导数,且f'(1)=1/2,