已知图像连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数为多少次
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:44:45
已知图像连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数为多少次
已知图像连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数为多少次
已知图像连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数为多少次
4次,分到0.00625
函数y=f(X)的图像在区间[a,b]上是连续不断的,且f(a)*f(b)
不是说:如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并有f(a)·f(b)
如果单调递增函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)xf(b)
已知图像连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数为多少次
已知函数y=f(X)的图像是连续不断的,在区间(0.2,0.3)上有唯一零点,用二分法求这个零点,精确度为0.0001则将区间(0.2,0.3)等分的次数要多少次?
函数f(x)在区间[a,b]的图像是连续不断的一条曲线.为什么是连续不断的
已知函数y=f(x)在R上的图像是连续不断的一条曲线,又f(1)f(2)->0
函数y=f(x)的图像是在R上连续不断的曲线,且f(1)·f(2)>0,则y=f(x)在区间[1,2]上有几个零点.
已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有惟一零点,如果用“二分法”求这个零点(精%C已知图象连续不断的函数y=f(x)在区间(a,b)上有惟一零点(b-a=0.1),如果用二分法求这个零点(精确到
有关函数零点的判定的问题高中数学必修1中有这样一段话:若果函数Y=F(X)在区间【a,b]上的图像是连续不断的一条曲线,并且有F(a)*F(b)<0,那么,函数y=F(x)在区间(a,b)内有零点,即存在c∈(a,b),
已知函数Y=F(X)的图像,根据图像找出函数的单调区间以及在每个单调区间上函数的增减性.
设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线……设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)
已知图像连续不断的函数y=f(x)在区间(0,1)上有唯一的零点,如果用二分法求这个零点(精确到0.001)的近似值 ,则将区间(0,1)等分的次数最多为多少答案是十次,为什么
有关二分法已知图像连续不断的函数y=f(x)在区间(a,b)(b-a=0)上有唯一零点,如果用二分法求这个零点(精确到0.0001)的近似值,那么将区间(a,b)等分的次数至多是几次?打错了,b-a=0.1
已知图像连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.0001)的近似值,那么将区间(a,b)等分的次数至少是______.
已知定义在区间[0,2]上的函数y=f(x)的图像如图所示,则y=-f(2-x)的图像为
已知定义在区间[0,2]上的函数y=f(x)的图像如图所示,则y=-f(2-x)的图像为
实数a,b,c是图像连续不断的函数f(x)定义域中的三个数,且满足a<b<c,f(a)f(b)<0,f(b)f(c)<0,则函数y=f(x)在区间(a,c)上零点的个数为A,2B,奇数C,偶数D,至少是2