跪求分解因式,分式,分式方程的例题(要详细的解题过程啊)题目不要太简单也不要太难,考卷中常常出现的题目和题型就行了.谢谢各位大虾了!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:51:43
跪求分解因式,分式,分式方程的例题(要详细的解题过程啊)题目不要太简单也不要太难,考卷中常常出现的题目和题型就行了.谢谢各位大虾了!
跪求分解因式,分式,分式方程的例题(要详细的解题过程啊)
题目不要太简单也不要太难,考卷中常常出现的题目和题型就行了.
谢谢各位大虾了!
跪求分解因式,分式,分式方程的例题(要详细的解题过程啊)题目不要太简单也不要太难,考卷中常常出现的题目和题型就行了.谢谢各位大虾了!
分解因式:ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难. 同样,这道题也可以这样做. ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1.5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出. 2.x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x^2+1) 利用二二分法,提公因式法提出 x2,然后相合轻松解决. 3.x^2-x-y^2-y 解法:=(x^2-y^2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然后相合解决.
bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2. 原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y). 2.求证:对于任何实数x,y,下式的值都不会为33: x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. 原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y). (分解因式的过程也可以参看右图.) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立. 3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形. 分析:此题实质上是对关系式的等号左边的多项式进行因式分解. 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形. 4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式.-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1) =-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).
分式方程:分式方程
方程中只含有整式方程和分式方程,且分母里含有字母的方程叫做分式方程.
分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时.不要忘了改变符号);②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根.否则这个根就是原分式方程的根.若解出的根是增根,则原方程无解.
如果分式本身约分了,也要带进去检验.
在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验是否符合题意.
归纳:
解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法.
例题:(1)x/(x+1)=2x/(3x+3)+1
两边乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
2x=-3
x=-3/2
分式方程要检验
经检验,x=-3/2是方程的解
(2)2/x-1=4/x^2-1
两边乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
分式方程要检验
经检验,x=1使分母为0,是增根.
所以原方程2/x-1=4/x^2-1
无解 .解分式方程记得要检验是否是曾根
分解因式很重要,一定要多找些题目练习;至于分式方程找几个掌握基本解法即可
要分式因解的,还是分式的,或者是分式方程的?
你这要花好多时间去找呢,建议你到百度文库里去以你所需要资料的关键词分别搜搜吧。