正方形ABCD的对角线长为a,四边形EFGH的四个顶点E、F、G、H分别在AB、BC、CD、DA上滑动,在滑动过程中,始终有EH∥BD∥FG,且EH=FG,求四边形EFGH的周长!等级低没图,就是 一个正方形里,有一个 类似 矩

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:49:09

正方形ABCD的对角线长为a,四边形EFGH的四个顶点E、F、G、H分别在AB、BC、CD、DA上滑动,在滑动过程中,始终有EH∥BD∥FG,且EH=FG,求四边形EFGH的周长!等级低没图,就是 一个正方形里,有一个 类似 矩
正方形ABCD的对角线长为a,四边形EFGH的四个顶点E、F、G、H分别在AB、BC、CD、DA上滑动,在滑动过程中,
始终有EH∥BD∥FG,且EH=FG,求四边形EFGH的周长!
等级低没图,就是 一个正方形里,有一个 类似 矩形的 EFGH

正方形ABCD的对角线长为a,四边形EFGH的四个顶点E、F、G、H分别在AB、BC、CD、DA上滑动,在滑动过程中,始终有EH∥BD∥FG,且EH=FG,求四边形EFGH的周长!等级低没图,就是 一个正方形里,有一个 类似 矩
做对角线AC BD
那么由于EH || BD
所以AEH 相似 ABD
而ABD是等腰三角形
那么AH/HD = AE/EB
所以AE = AH HD = EB
又应为GF || BD GF = HE
所以AE = AH = GC = CF
设为x
那么另一部分为y
所以x^2+x^2 = EH^2
所以周长 = 2开根(2x^2) + 2开跟(2*y^2) = 2开跟2(x+y) = 2开跟2边长
又因为根号2边长 = a
所以为2a

2*根号2a

如果前提是EH∥BD∥FG,且EH=FG,那么那个四边形就是矩形和正方形了,再连接EF,HG。再利用特殊情况解决,你可以设定那个四边形是一个正方形。其实不管他们是正方形还是矩形,他们的周长都是一样的。所以说是2a

2a

该题如果是个填空或选择可以取特殊条件来解答,令E、F、G、H分别为AB、BC、CD、DA的中点,则EF=FG=GH=HE=1/2BD,BD=跟2*a,所以四边形的周长为2倍跟2*a.

..

四边形的性质如图,正方形ABCD中,AP=13cm,点A是点P关于EF为对称轴的对称点,求EF的长. 已知:如图,EF分别为四边形ABCD的对角线ACBD的中点,求证:EF 正方形abcd中,点ef为对角线bd上两点,de=df(1)四边形aecf是什么四边形 初中勾股定理题已知正方形ABCD和等边三角形BEF,它们的边长皆为a,O是正方形两条对角线的交点,EF‖AC,EF与BD交点为H,求OH的长. 已知正方形ABCD和等边三角形BEF,它们的边长皆为a,O是正方形两条对角线的交点,EF‖AC,EF与BD交点为H.求OH长. 如图1,四边形abcd为正方形,p是对角线db上一点,四边形PECF为矩形.求证:(1)PA=EF;(2)PA⊥EF 在正方形ABCD中对角线AC.BD相交于点O点E在AB上EG⊥AC,EF⊥BD,垂足分别为G、F四边形EFOG的周长于正方形ABCD的对角线的长有怎样的关系?请证明你的结论. EF,GH过正方形ABCD的对角线交点O,EG垂直FH,求证四边形EFGH是正方形 在正方形ABCD中对角线AC.BD相交于点O点E在AB上EG⊥AC,EF⊥BD,垂足分别为G、F四边形EFOG的周长于正方形ABCD的对角线的长有怎样的关系? 正方形ABCD中 P为对角线BD上的一点.四边形PECF是矩形 试用向量方法证明:EF=PA 正方形ABCD中 P为对角线BD上的一点.四边形PECF是矩形 试用向量方法证明:EF=PA 正方形ABCD中 P为对角线BD上的一点.四边形PECF是矩形 试用向量方法证明:EF=PA 如图,已知正方形ABCD 的对角线长为2根号2,将正方形ABCD 沿直线EF折叠,则图中折成如图,已知正方形ABCD 的对角线长为2根号2,将正方形ABCD 沿直线EF折叠,则图中折成的4个阴影三角形的周长之和为 如图已知四边形ABCD是边长为2的正方形以对角线BD为边如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边做正三角形BDE,过E作DA的延长线的垂线EF,垂足为F.①找出图中与EF相等的线段,并证明 如图,E,F分别为四边形ABCD的对角线AC,BD的中点,求证:EF 如图所示:E、F分别为四边形ABCD的对角线AC、BD的中点 求证:EF 已知E在正方形ABCD中,对角线bd上的一点,EF⊥BC EG⊥CD,垂足分别为F,G若正方形ABCD的周长为30则四边形efcg的周长是多少 如图,在正方形ABCD中点E,F为对角线BD上的点,且DE=BF. ⑴四边形AECF是什么四边形?如图,在正方形ABCD中点E,F为对角线BD上的点,且DE=BF.⑴四边形AECF是什么四边形?请说明理由;⑵若EF=4cm,DE=BD=2cm,求四