已知函数f(x)定义在区间(-1,1)上,f(1/2)=-1,且当x,y属于(-1,1)时,恒有f(x)-f(y)=f((x-y)/(1-xy))又数列{an}满足a1=1/2,an+1=(2an)/(1+an^2).设bn=1/f(a1)+.1/f(an).求f(an)的表达式是否存在正整数m,使得对任意n属

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:48:43

已知函数f(x)定义在区间(-1,1)上,f(1/2)=-1,且当x,y属于(-1,1)时,恒有f(x)-f(y)=f((x-y)/(1-xy))又数列{an}满足a1=1/2,an+1=(2an)/(1+an^2).设bn=1/f(a1)+.1/f(an).求f(an)的表达式是否存在正整数m,使得对任意n属
已知函数f(x)定义在区间(-1,1)上,f(1/2)=-1,且当x,y属于(-1,1)时,恒有f(x)-f(y)=f((x-y)/(1-xy))
又数列{an}满足a1=1/2,an+1=(2an)/(1+an^2).设bn=1/f(a1)+.1/f(an).求f(an)的表达式
是否存在正整数m,使得对任意n属于N,都有bn小于(m-8)/4成立,若存在,求出m最小值;若不存在,说明理由

已知函数f(x)定义在区间(-1,1)上,f(1/2)=-1,且当x,y属于(-1,1)时,恒有f(x)-f(y)=f((x-y)/(1-xy))又数列{an}满足a1=1/2,an+1=(2an)/(1+an^2).设bn=1/f(a1)+.1/f(an).求f(an)的表达式是否存在正整数m,使得对任意n属
对于f(x) - f(y) = f((x-y)/(1-xy))
代入y = x可得 f(0) = 0
代入x = 0可得 f(-y) = -f(y) (因此是奇函数)
代入y = x可得2f(x) = f(x) - f(-x) = f(2x/(1+x^2))发现和a_n递推一样
因此f(a_n+1) = 2f(a_n)等比,首项f(a_1) = -1,通项f(a_n) = -2^(n-1)
b_n(等比求和)= 1/(2^(n-1)) - 2
这里很奇怪,是个递减数列,居然要求b_n最大值,楼主你确定f(1/2) = -1而不是1么.囧
如果楼主没有记错,b_n最大值必然是b_1 = -1然后要 -14没有最小值.
如果记错了是1的话f(a_n) = 2^(n-1),b_n = 2 - 1/(2^(n-1))最大值2且取不到
因此2

。。。。。

已知f(x)是定义在区间【-2,2】上的减函数,且f(x-2)<f(1-x),求x的取值范围 已知定义在R上的奇函数f(x)满足f(1+x)=f(1-x),且在区间[3,5]上单调递增,则函数f(x)在区间[1,3]上的最大值、最小值是? 已知f(x)是定义区间在[-1,1]上的增函数,且f(x-1) 已知定义在区间【-3,3】上的函数f(x)单调递增,则满足f(2x-1) 已知f(x)是定义在区间【-1,1】上的奇函数且为增函数,f(x)=1 (1)解不等式f(x+1/2) 已知定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m) 已知函数f(x)是定义在区间(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1(1)求f(1)(2)若f(x)+f(2-x) 已知定义在实数集R上的偶函数f(x)在区间[0,+无穷)上是单调增函数,若f(1) 已知定义在实数R集上的偶函数f(x)在区间[0,+无穷)上是单调递增函数,若f(1) 已知定义在R上的偶函数f(x)在区间(0,正无穷大)上是单调增函数,若f(1) 已知定义在区间(0,正无穷)上的函数f(x)满足f(x1/x2)=f(x1)-f(x2),且当x>1时,f(x) 已知定义在区间(0,+∞)上的函数f(x)满足f(x1/x2)=f(x1)-f(x2),且当x>1时f(x) 已知定义在区间(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n),且当x>1时,f(x) 已知函数f(x)=x^-2ax+b是定义在区间[-2b,3b-1]上的偶函数,求函数的值域 已知函数f(x)=2x+1/x+1.(1)用定义证明函数在区间[1,+∞)是增函数;(2)求该函数在区间[2,4]上的最大值和最小值. 已知函数f(x)=x-1/x 1、用函数单调性的定义证明:函数f(x)在区间(0、正无穷大)上为增函数.2、当x属...已知函数f(x)=x-1/x1、用函数单调性的定义证明:函数f(x)在区间(0、正无穷大)上为增函数.2、当x 定义在区间(-1,1)上的函数f(x)是减函数,且满足f(1-a) 已知函数f(x)=(x+1)分之(2x+1).(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论已知函数f(x)=(x+1)分之(2x+1).(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在