a2+b2+c2+d2=4abcd求证:以a,b,c,d为边的四边形是菱形.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:30:27

a2+b2+c2+d2=4abcd求证:以a,b,c,d为边的四边形是菱形.
a2+b2+c2+d2=4abcd求证:以a,b,c,d为边的四边形是菱形.

a2+b2+c2+d2=4abcd求证:以a,b,c,d为边的四边形是菱形.
应该是四次方吧a^4+b^4+c^4+d^4=4abcd
a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4=4abcd-2a^2b^2-2c^2d^2
(a^2-b^2)^2+(c^2-d^2)^2=-2(ab-cd)^2
(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0
平方相加等于0,所以每一个平方都等于0
(a^2-b^2)^2=(c^2-d^2)^2=(ab-cd)^2=0
a^2-b^2=c^2-d^2=ab-cd=0
a,b,c,d都大于0
a^2=b^2,所以a=b
c^2=d^2,所以c=d
ab-cd=0
ab=cd
把a=b和c=d代入
b^2=d^2,b=d
所以a=b=c=d
为菱形

少打了个根号

应该是四次方吧,有没有打错?