已知a.b.c∈R+ ,用综合法证明1.(ab+a+b+1)(ab+ac+bc+c^2)≥16abc2.2(a^3 +b^3 +c^3 )≥a^2 (b+c)+b^2(a+c)+c^2(a+b)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:33:20

已知a.b.c∈R+ ,用综合法证明1.(ab+a+b+1)(ab+ac+bc+c^2)≥16abc2.2(a^3 +b^3 +c^3 )≥a^2 (b+c)+b^2(a+c)+c^2(a+b)
已知a.b.c∈R+ ,用综合法证明
1.(ab+a+b+1)(ab+ac+bc+c^2)≥16abc
2.2(a^3 +b^3 +c^3 )≥a^2 (b+c)+b^2(a+c)+c^2(a+b)

已知a.b.c∈R+ ,用综合法证明1.(ab+a+b+1)(ab+ac+bc+c^2)≥16abc2.2(a^3 +b^3 +c^3 )≥a^2 (b+c)+b^2(a+c)+c^2(a+b)
1,(ab+a+b+1)(ab+ac+bc+c^2)=(a+1)(b+1)(a+c)(b+c)≥2√a*2√b*2√ac*2√bc=16abc
2,a^3+b^3-a^2*b-b^2*a=(a-b)^2(a+b)≥0,所以a^3+b^3≥a^2*b+b^2*a
同理b^3+c^3≥b^2*c+c^2*b,a^3+c^3≥a^2*c+c^2*a
左边与左边相加,右边与右边相加,整理即可得到

[ln(x)]=1/x>0,[ln(x)]''=-1/x�0�5<0 ,所以 ln(x) 在 (0,+∞) 上是严格单调增加的上凸的函数,所以 [m/(m+n)]*ln(n)+[n/(m+n)]*ln(m) ≤ ln{[m/(m+n)]*n+[n/(m+n)]*m} = ln[2mn/(m+n)] ≤ ln[(m+n)/2],即 (m+n)/2 ≥ [(m^n)*(n^m)]^[1/(m+n)] 。

用综合法证明:已知a>b>0,c 用综合法证明:已知a>b>0,c 已知a,b,c∈R+,用综合法证明 2(a³+b³+c³)≧a²(b+c)+b²(a+c)+c²(已知a,b,c∈R+,用综合法证明2(a³+b³+c³)≧a²(b+c)+b²(a+c)+c²(a+b)求解, 用综合法或分析法证明 若a.b.c∈r证明a平方+b平方+c平方≥ab+bc+ca拜托各位大神 已知a,b,c∈R,且ab+bc+ca=1,用综合法证明下列不等式成立的是:①1/a+1/b+1/c≥2根号3②abc(a+b+c)小于等于1/3. 已知a.b.c∈R+ ,用综合法证明1.(ab+a+b+1)(ab+ac+bc+c^2)≥16abc2.2(a^3 +b^3 +c^3 )≥a^2 (b+c)+b^2(a+c)+c^2(a+b) 已知a,b,c∈R+,用综合法证明:(1) (ab+a+b+1)(ab+ac+bc+c²)≥16abc (2) 2(a³+b³+c³)≥a²(b+c)+b²(a+c)+c²(a+b) 已知n>0,求证n+4/n²≥3 1.设0<a,b,c<1,证明(1-a)b,(1-b)c,(1-c)a不能都大于1/4 已知a>b>c,用综合法证明a-b/1+b-c/1>=a-c/4 已知a>b>c,用分析法或综合法证明:1/(a+b)+1/(b-c)>=4/(a-c) 已知a>0,b>0,c>0,用综合法证明(b+c)/a+(c+a)/b+(a+b)/c≥6 已知a大于b大于c,用分析法或综合法证明:1/a-b+1/b-c大于或等于4/a-c 用综合法证明一条高二数学题用综合法证明:已知a.b.c为正实数.且a+b+c=1,求证:(1/a-1)(1/b-1)(1/c-1)>=8注意用综合法证明不是分析法喔 已知a>0,b>0,c>0,用综合法证明:(b+c/a)+(c+a/b)+(a+b/c)≥6b+c 是个整体,是分子 (b+c)/a + (c+a)/b + (a+b)/c ≥6 已知a,b,c∈R,且ab+bc+ca=1,用综合法证明下列不等式成立的是A.a^2+b^2+c^2≥2B.(a+b+c)^2≥3C.1/a+1/b+1/c≥2根号3D.a+b+c≥根号3解释下B和D有什么区别A和C错的话错在哪 已知a,b,c属于R+,用综合法证明:(1)(ab+a+b+1)(ab+ac+bc+c^2)>=16abc (2) 2(a^3+b^3+c^3)>=a^2(b+c)+b^2(a+c)+c^2(a+b) 用综合法证明:a²+b²+c²≥ab+bc+cd 用综合法证明:已知a>0,b>0,那么(a+b/a)+(a+b/b)>=4. 已知△ABC的三边a,b,c的倒数成等差数列,试分别用综合法和分析法证明∠B为锐角