lim(1+x)(1+x^2)…[1+x^(2^n)],|x|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:59:30
lim(1+x)(1+x^2)…[1+x^(2^n)],|x|
lim(1+x)(1+x^2)…[1+x^(2^n)],|x|
lim(1+x)(1+x^2)…[1+x^(2^n)],|x|
lim(1+x)(1+x^2)…[1+x^(2^n)]
=lim(1-x)(1+x)(1+x^2)…[1+x^(2^n)]/(1-x)
=lim(1-x^2)(1+x^2)…[1+x^(2^n)]/(1-x)
.逐项乘下去得:
=lim[1-x^(2^n+1)]/(1-x)
因为|x|<1,所以lim x^(2^n+1)=0
所以原式=lim1/(1-x),这里应该是n→∞,而不是x→∞
答案就是1/(1-x)
lim(1-x)^(2/x) x->0
Lim(x>1) x-1/x^2+x-2.计算
lim x→1 x-1/x^2-x
lim(x^2+1/x^2-2x)^x=?
lim(x->无穷大){(2^x-3^x)/2}^(1/x)
Lim [x^2/(x^2-1)]^x (x→∞)
极限:lim(x->2)1/(x-2)
lim x->正无穷大 x ( sqrt(x^2+1)-x )
lim(x->0)((2-x)/(3-x))^1/x
lim(1+x/x)2x (x→∞)
lim(x→0)e^x-x-1/x^2
lim(x+1/x+2)^x=?x趋于无穷
lim(x趋于无穷)(x/1+x)^(x+2)=?
lim(1-(5/x))^x-2
lim(x+e^2x)^(1/sinx)
lim[(x-1)/(x+1)]^x
lim (e-(1+x)^(1/x))/x
lim(x+e^3x)^1/x