(1-1/2-1/3-1/4..-1/2004)*(1+1/2+1/3+1/4+...+1/2005)-(1-1/2-1/3-1/4-...-1/2005)*(1+1/2+1/3+1/4+...+1/2004)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:20:20

(1-1/2-1/3-1/4..-1/2004)*(1+1/2+1/3+1/4+...+1/2005)-(1-1/2-1/3-1/4-...-1/2005)*(1+1/2+1/3+1/4+...+1/2004)
(1-1/2-1/3-1/4..-1/2004)*(1+1/2+1/3+1/4+...+1/2005)-(1-1/2-1/3-1/4-...-1/2005)*(1+1/2+1/3+1/4+...+1/2004)

(1-1/2-1/3-1/4..-1/2004)*(1+1/2+1/3+1/4+...+1/2005)-(1-1/2-1/3-1/4-...-1/2005)*(1+1/2+1/3+1/4+...+1/2004)
原式=[1-(1/2+1/3+1/4.+1/2004)]*[1+(1/2+1/3+1/4+..+1/2005)]-[1-(1/2+1/3+1/4+..+1/2005)]*[
1+(1/2+1/3+1/4+...+1/2004)]把1/2+1/3+1/4.+1/2004看做a,1/2+1/3+1/4+..+1/2005看做b
则原式=(1-a)(1+b)-(1-b)(1+a)=2b-2a=1/2005*2=2/2005


设a=1-1/2-1/3-1/4-...-1/2004
b=1/2+1/3+1/4+...+1/2004
原式变为
a*(b+1/2005)-(a-1/2005)*b
= ab+a/2005-ab+b/2005
=(a+b)/2005
=(1-1/2-1/3-1/4-...-1/2004+1/2+1/3+1/4+...+1/2004)/2005
= 1/2005


设a=1-1/2-1/3-1/4-...-1/2004
b=1/2+1/3+1/4+...+1/2004+1/2005
axb-(a-1/2005)x(b-1/2005)=2/2005