什么是“哥德巴赫猜想”

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:48:33

什么是“哥德巴赫猜想”
什么是“哥德巴赫猜想”

什么是“哥德巴赫猜想”

“哥德巴赫猜想”是数论中存在最久的未解问题之一.这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中.用现代的数学语言,哥德巴赫猜想可以陈述为:“任一大于2的偶数,都可表示成两个素数之和.“

【将一个偶数用两个质数之和表示的方法,等于同一横线上,蓝线和红线的交点数.】

这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系.整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和,等等.而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆.例如:

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 3 + 7 = 5 + 5

12 = 5 + 7

14 = 3 + 11 = 7 + 7

换句话说,哥德巴赫猜想主张每个大于等于4的偶数都是哥德巴赫数——可表示成两个素数之和的数.哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题.

哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破.目前最好的结果是陈景润在1973年发表的陈氏定理(也被称为“1+2”).

哥德巴赫猜想另一个较弱的版本(也称为弱哥德巴赫猜想)是声称大于5的奇数都可以表示成三个质数之和.这个猜想可以从哥德巴赫猜想推出.1937年,苏联数学家维诺格拉多夫证明了每个充分大的奇数,都可以表示成三个质数之和,基本证明了弱哥德巴赫猜想.

这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。
今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。...

全部展开

这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。
今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。

收起

希望帮得上忙
哥德巴赫猜想是:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
历史:在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也...

全部展开

希望帮得上忙
哥德巴赫猜想是:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
历史:在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。
不懂请追问

收起