已知扇形的圆心角是A,所在圆的半径是R,若扇形的周长是一定值C(C>0),当A为多少弧度时该扇形的面积最大C=l+2R=|A|R+2RR=C/(A+2)S=1/2×A×[C/(A+2)]²=C²/2×A×1/﹙A²+4A+4﹚≤C²/16当且仅当A=4/A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:48:14
已知扇形的圆心角是A,所在圆的半径是R,若扇形的周长是一定值C(C>0),当A为多少弧度时该扇形的面积最大C=l+2R=|A|R+2RR=C/(A+2)S=1/2×A×[C/(A+2)]²=C²/2×A×1/﹙A²+4A+4﹚≤C²/16当且仅当A=4/A
已知扇形的圆心角是A,所在圆的半径是R,若扇形的周长是一定值C(C>0),当A为多少弧度时该扇形的面积最大
C=l+2R
=|A|R+2R
R=C/(A+2)
S=1/2×A×[C/(A+2)]²
=C²/2×A×1/﹙A²+4A+4﹚≤C²/16
当且仅当A=4/A,即A=2(A=-2舍去﹚时,扇形面积有最大值
其中的C²/16是如何来的请大家帮忙解释一下!
已知扇形的圆心角是A,所在圆的半径是R,若扇形的周长是一定值C(C>0),当A为多少弧度时该扇形的面积最大C=l+2R=|A|R+2RR=C/(A+2)S=1/2×A×[C/(A+2)]²=C²/2×A×1/﹙A²+4A+4﹚≤C²/16当且仅当A=4/A
C²/2×A×1/﹙A²+4A+4﹚
=C^2* A/2(A^2+4A+4)
所以只需证A/2(A^2+4A+4)=2根号(A*4/A)=2*2=4,等号成立时 A=4/A,A=2
2(A+4/A+4)>=2*(4+4)=16
1/2(A+4/A+4)
就是这一步对吧:C²/2×A×1/﹙A²+4A+4﹚≤C²/16
因为:A×1/﹙A²+4A+4﹚=1/(A+4+4/A)
其中A+4/A>=2 * ( A * (4/A) )^(1/2)=4 (基本不等式)
所以 (A+4+4/A)>=8
则 1/(A+4+4/A)<=1/8
所以 C²/2×A×1/﹙A²+4A+4﹚≤C²/16