矩阵的秩R(A),R(B),R(AB)的关系矩阵的秩R(A),R(B),R(AB)的满足什么关系是不是R(AB)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:00:53

矩阵的秩R(A),R(B),R(AB)的关系矩阵的秩R(A),R(B),R(AB)的满足什么关系是不是R(AB)
矩阵的秩R(A),R(B),R(AB)的关系
矩阵的秩R(A),R(B),R(AB)的满足什么关系
是不是R(AB)

矩阵的秩R(A),R(B),R(AB)的关系矩阵的秩R(A),R(B),R(AB)的满足什么关系是不是R(AB)
是的

矩阵的秩R(A),R(B),R(AB)的关系矩阵的秩R(A),R(B),R(AB)的满足什么关系是不是R(AB) 线性代数求矩阵的秩设ABC为三个N阶矩阵,且|AB|不等于0,判断 结论R(ABC)=?R(A) ,R(ABC)=?R(C),R(ABC)=?R(B),R(ABC)=?R(AB) 已知A为m*n阵B为n*m矩阵 证明r(AB)≦min{r(A),r(B)},r表示矩阵的秩 已知矩阵A和矩阵AB秩相等[r(A)=r(AB)],证明矩阵A和矩阵AB的值域相等(R(A)=R(AB)).研究生课程矩阵理论里的内容 线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC 关于矩阵的秩的问题①若|A|≠0,则r(AB)=r(BA)=r(B)②若A是m×n矩阵,B是n×s矩阵,若AB=0;则r(A)+r(B)≤n③若A是m×n矩阵,B是n×m矩阵,则r(AB)≤r(B) 刘老师,帮忙证明下这个矩阵的秩,为什么等于R(A)+R(B) 设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC 若R(AB)=R(B) 则A是行满秩矩阵还是列满秩矩阵 为什么 线性代数 A为m×p矩阵 B为p×n矩阵 r(A)+r(B)-p≤r(AB)≤min{r(A),r(B)}线性代数 A为m×p矩阵 B为p×n矩阵 证明:r(A)+r(B)-p≤r(AB)≤min{r(A),r(B)} (r表示秩)后半部分可以不用 线性代数:满秩、行满秩、列满秩矩阵与另一矩阵的相乘后,新的矩阵的秩?如Am*n矩阵,另一矩阵B:1、A为满秩矩阵时,则r(AB)=r(BA)=r(B);2、A为行满秩矩阵时,则r(BA)=r(B);3、A为列满秩矩阵时,则r(AB)=r(B 设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则( ).(A)r>r1 (B)r 设A为m×n矩阵,C是n阶可逆矩阵,A的秩为r1,B=AC的秩为r,则( ) A.r>r1 B.r=r1 C.r 设A,B为n阶矩阵,如果AB=0,那么秩(A)+秩(B)≤n由已知AB=0,所以B的列向量都是AX=0的解,而AX=0的基础解系含n-r(A)个向量,所以r(B) ≤ n - r(A).(请问老师r(B) 为何≤ n - r(A)?)所以 r(A) + r(B) ≤ n.(请问老 设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0) 线性代数中R(A)=R(B)=n,R(A),R(B)为矩阵A,B的秩, 设A,B分别为n*m,m*n矩阵,如果AB=In(In表示n阶单位矩阵,下同) 设A,B分别为n*m,m*n矩阵,如果AB=In (In表示n阶单位矩阵,下同)则下列结论正确的是(A) BA=Im(m是下标) (B) r(A)=r(B)=n (C) r(A)=r(B)=m (D) r(A),r(B)>n 六、设A={a,b,c.d},A上关系R={,,,,}(1)、画出R的关系图,并写出R的关系矩阵.(2)、求R²,R³,R⒋,Rˉ⒈(3)、求r(R),s(R),t(R).