求定积分∫1/(1-sinx)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:58:23

求定积分∫1/(1-sinx)dx
求定积分∫1/(1-sinx)dx

求定积分∫1/(1-sinx)dx
∫ 1/(1-sinx) dx
= ∫ (1+sinx)/(1-sin²x) dx
= ∫ (1+sinx)/cos²x dx
= ∫sec²x dx + ∫secxtanx dx
= tanx + secx + C
咁简单嘅不定积分,不容许错误!

sinx=2sin(x/2)cos(x/2)
1-sinx=sin²(x/2)-2sin(x/2)cos(x/2)+cos²(x/2)=(sin(x/2)-cos(x/2))²=[√2sin(x/2-π/4)]²=2sin²(x/2-π/4)
原积分=(1/2)∫1/sin²(x/2-π/4) dx
...

全部展开

sinx=2sin(x/2)cos(x/2)
1-sinx=sin²(x/2)-2sin(x/2)cos(x/2)+cos²(x/2)=(sin(x/2)-cos(x/2))²=[√2sin(x/2-π/4)]²=2sin²(x/2-π/4)
原积分=(1/2)∫1/sin²(x/2-π/4) dx
=-(1/2)cot(x/2-π/4)+C

收起