双曲线C的中心在原点,焦点在y轴上,其顶点A、B向平行于虚轴的动弦PQ所张的角互补.(1) 求证:双曲线C为等轴双曲线(2)双曲线C与圆D:(x-4)^2+(y-6)^2=13的两个交点M,N的连线段MN正好是圆D直径,试求双

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 20:27:53

双曲线C的中心在原点,焦点在y轴上,其顶点A、B向平行于虚轴的动弦PQ所张的角互补.(1) 求证:双曲线C为等轴双曲线(2)双曲线C与圆D:(x-4)^2+(y-6)^2=13的两个交点M,N的连线段MN正好是圆D直径,试求双
双曲线C的中心在原点,焦点在y轴上,其顶点A、B向平行于虚轴的动弦PQ所张的角互补.
(1) 求证:双曲线C为等轴双曲线
(2)双曲线C与圆D:(x-4)^2+(y-6)^2=13的两个交点M,N的连线段MN正好是圆D直径,试求双曲线C的方程.

双曲线C的中心在原点,焦点在y轴上,其顶点A、B向平行于虚轴的动弦PQ所张的角互补.(1) 求证:双曲线C为等轴双曲线(2)双曲线C与圆D:(x-4)^2+(y-6)^2=13的两个交点M,N的连线段MN正好是圆D直径,试求双
(1)由题知双曲线方程可为:y^2/a^2-x^2/b^2=1(a>0,b>0),设P(x0,y0),则Q(-x0,y0),
∵∠PAQ+∠PBQ=180°,∴∠PAE+∠PBE=90°
∴tan∠PAE•tan∠PBE=|x0/(y0-a)|•|x0/(y0+a)|=|x0^2/(y0^2-a^2)|
将双曲线方程代入上式可得tan∠PAE•tan∠PBE=b^2/a^2=1
∴a=b(a=-b舍去),
∴双曲线C是一条等轴双曲线
(2)由(1)知双曲线C的方程为y2-x2=a2.设M(x1,y1),N(x2,y2),则y1^2 -x1 ^2=a^2,y2^2 -x2 ^2=a^2,
∴(y1+y2)•(y1-y2)-(x1+x2)(x1-x2)=0
∵MN的中点为D(4,6),
∴12(y1-y2)-8(x1-x2)=0,(y1-y2)/(x1-x2)=8/12=2/3
即Kmn=2/3
∴MN:y-6= 2(x-4)/3
代入圆的方程得:(x-4)^2+(x-4)^2•4/9=13,
∴x=7或1,
∴M点的坐标为(7,8)或(1,4)
代入双曲线方程得a^2=8^2-7^2(或4^2-1^2)=15,
∴双曲线方程为y^2-x^2=15.

已知中心在原点,焦点在x轴上的双曲线的一条渐近线为y=2/3x则其离心率为 中心在坐标原点,焦点在y轴上的双曲线的渐进线过(2,1),则其离心率为? 已知双曲线C的中心在原点,右焦点与抛物线y^=8x 已知双曲线C的中心在原点且焦点在X轴上,过双曲线C的一个焦点且与双曲线有且只有一个交点的直线的方程为4x-3y+20=0.(1)求双曲线C的方程.(2)若过双曲线的左焦点F1任作直线L,与过右焦点F2的直 求以原点为中心,焦点在x轴上,渐近线方程是y=正负2x,焦点到中心的距离等于5的双曲线方程 :双曲线的中心在原点,焦点在X轴上,过点(2,-3)且渐近线是Y=正负三分之二X,秋双曲线的方程. 已知双曲线的中心在原点 焦点在y轴上 焦距为16 离心率为4/3 求双曲线的方程 双曲线的中心在原点 焦点在x轴上 过点(2,-3) 且渐近线是y=±2/3x 求双曲线的方程 已知双曲线的中心在原点,焦点在X轴上,离心率等于2.已知双曲线的中心在原点,焦点在X轴上,离心率等于2,过其右焦点且倾斜角为45度的直线被双曲线截得的弦MN的长为6.求此双曲线的方程. 已知双曲线C的中心在原点,抛物线y^2=2根号5x 的焦点是双曲线C的一个焦点,且双曲线C过点(1,根号3)已知双曲线C的中心在原点,抛物线y^2=2根号5x 的焦点是双曲线C的一个焦点,且双曲线C过点(1,根 双曲线的中心在原点,焦点在x轴上,两准线间距离为9/2,直线y=(x-4)/3与双曲线相交所得弦的中点的横坐标是双曲线的中心在原点,焦点在x轴上,两准线间距离为9/2,直线y=(x-4)/3与双曲线相交所 双曲线C的中心在原点,焦点在y轴上,其顶点A、B向平行于虚轴的动弦PQ所张的角互补.(1) 求证:双曲线C为等轴双曲线(2)双曲线C与圆D:(x-4)^2+(y-6)^2=13的两个交点M,N的连线段MN正好是圆D直径,试求双 等轴双曲线C的中心在原点,焦点在X轴上,C与抛物线y平方=4x的准线交于A、B点,AB=根号3,则C的实轴长为和思路方法 已知双曲线C的中心在原点,抛物线y方=-2更号5X的焦点是双曲线的一个焦点,且双曲线过点(-1,更号3)已知双曲线C的中心在原点,抛物线y2=-2更号5X的焦点是双曲线的一个焦点,且双曲线过点(- 中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为 已知双曲线的焦点在Y轴上,中心在原点,且点P1(3,-4根号2)P2(9/4,5),在此双曲线上,求双曲线标准方 双曲线的焦点在X轴上,中心在原点,一条渐近线为y=根号2x,点P(1,-2)在双曲线上,则双曲线标准方程为希望打上步骤 已知中心在原点,离心率为根号五 ,焦点在 Y轴上的双曲线则它的渐近线方程为