全体有理数集合记作Q,Q={p/q|p为整数,q为非零自然数,且p与q互质}这个定义不大明白?按照同济高数5版中有理数定义,p/q应为分数,不包括整数.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:51:06
全体有理数集合记作Q,Q={p/q|p为整数,q为非零自然数,且p与q互质}这个定义不大明白?按照同济高数5版中有理数定义,p/q应为分数,不包括整数.
全体有理数集合记作Q,Q={p/q|p为整数,q为非零自然数,且p与q互质}这个定义不大明白?
按照同济高数5版中有理数定义,p/q应为分数,不包括整数.
全体有理数集合记作Q,Q={p/q|p为整数,q为非零自然数,且p与q互质}这个定义不大明白?按照同济高数5版中有理数定义,p/q应为分数,不包括整数.
联合zx信仰和blue_tuesday的解答,就正确了.
其实有理数就是所有的分数.
其中,分母为1,分子为整数(包括负数和0)的分数,就是所有的整数.分母不为1,分子不为0的分数,就是所有的有限小数,及所有的无限循环小数.(无限不循环小数为无理数,不能用分数表示.)只不过,同一个有限小数或无限循环小数,可能有多个分数表示方法(分子分母同乘以一个不为0的数).
知道以上的区分,再看这个定义,就很明确了.
另:
整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式.
任何一个有理数都可以在数轴上表示.
无限不循环小数和开平方开不尽的数叫作无理数 ,比如π,3.1415926535897932384626.
而有理数恰恰与它相反,整数和分数统称为有理数
其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数.
帮忙求证一下‘全体有理数的集合记作Q,即Q={P/q,p属于z,q属于N*且p与q互质}
关于有理数集合定义今天翻看某大学主编的高等数学,发现有个问题全体有理数的集合记作Q,即Q={p/q|p为Z,q为Z,且q不为0,p与q互质}(z代表整数集)有理数的定义为全体整数,小数,无限循环小数.
有理数集合表示法的为问题,我在看同济第五版高数上册时,其第2页第5行写到:全体有理数的集合记作Q,即 Q={p/q|p∈Z,q∈N+且p与q互质},如果p与q互为质数的话,那p/q岂不是不可能是整数,而有理
全体有理数集合记成Q,Q={p/q |p∈Z,q∈N+,p,q互质}为什么q不能是负数?
全体有理数集合记作Q,Q={p/q|p为整数,q为非零自然数,且p与q互质}这个定义不大明白?按照同济高数5版中有理数定义,p/q应为分数,不包括整数.
有理数集合定义的一些疑问 全体有理数的集合记作Q,Q={p/q| p为整数,q为正整数且p与q互质}此定义可以在高等数学 第五版 上册 同济大学应用数学系 主编的一书中的第2页找到!零是有理数中的
书上写到:全体有理数的集合记作Q.即Q=(p/q|p属于Z,Q属于N+ 且p与q互质)注:小括号应该为大括号,但打不出来我的问题是,互质,这个概念不是说对于自然数而言吗,但p可以小于0的,这是怎么回事
关于有理数的集合的定义全体有理数的集合记作Q,即Q={p/q|p∈Z,q∈N+且p与q互质},为什么要互质呢?可以举列子吗?不是任何数都可以吗?
全体有理数集合没懂Q={p/q|q∈Z,q∈N,且p,q 互质}什么叫互质?为什么整数集合和自然数集合相除才是有理数集合啊?
高数书上写:全体有理数集合记成Q,即Q={pq |p∈Z,q∈N+,p,q互质}我觉得互质的条件好象多余,请高手指点.
19/13是有理数还是无理数啊?有理数的集合Q可以表示为Q={P/Q|P∈Z,Q∈N,且P,Q={P/Q|P∈Z,Q∈N,且P,Q互质}为什么对啊?P、Q互质的话就是没有公约数也就是除不尽,除不尽还是有理数吗?按这样
初学“有理数集合Q={p/q|p属于Z,q属于N+,且p与q互质}”,问什么p与q要互质?
有理数的集合Q可以表示为Q={P/Q|P∈Z,Q∈N,且P,Q互质}是正确的.对于这个说法,那为什么还要定义q属于N?为何不直接写1?
有理数集合定义?Q={p/q| p为整数,q为正整数且p与q互质},3和10是互质的,但是10/3是无理数啊!
已知集合p={4,5,6}Q={1,2,3} 定义P※Q={x|x=p-q,p∈P,q∈Q}则集合P※Q的所有真子集的个数为?
已知集合P={4,5,6},Q={1,2,3},定义P+Q={X|X=p-q,p属于P,q属于Q},则集合P+Q的所有真子集的个数为?
已知集合 P ={3,4} ,Q ={1,2} ,定义 P(+)Q = {x|x= p-q ,p∈P ,q∈Q },则集合 P(+)Q 的真子集的个数为______________ .
设Q是R 中的全体有理数集合.试证明Q的边界点集合∂Q=R