设椭圆C1的方程x2/a2+y2/b2=1(a>b>0),曲线C2的方程y=1/x ,且C1与C2在第一象限内只有一个公共点P.(1)试用a表示点P的坐标;(2)设A.B是椭圆C1的两个焦点,当a变化时,求三角形ABP的面积函数S(a)的值域(3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:20:56

设椭圆C1的方程x2/a2+y2/b2=1(a>b>0),曲线C2的方程y=1/x ,且C1与C2在第一象限内只有一个公共点P.(1)试用a表示点P的坐标;(2)设A.B是椭圆C1的两个焦点,当a变化时,求三角形ABP的面积函数S(a)的值域(3)
设椭圆C1的方程x2/a2+y2/b2=1(a>b>0),曲线C2的方程y=1/x ,且C1与C2在第一象限内只有一个公共点P.
(1)
试用a表示点P的坐标;
(2)
设A.B是椭圆C1的两个焦点,当a变化时,求三角形ABP的面积函数S(a)的值域
(3)
记min{y1,y2,……,yn}为y1,y2,……,yn中的最小的一个,设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a),S(a)}的表达式.

设椭圆C1的方程x2/a2+y2/b2=1(a>b>0),曲线C2的方程y=1/x ,且C1与C2在第一象限内只有一个公共点P.(1)试用a表示点P的坐标;(2)设A.B是椭圆C1的两个焦点,当a变化时,求三角形ABP的面积函数S(a)的值域(3)
x^2/a^2+1/x^2/b^2=1
b^2x^4+a^2=a^2b^2x^2
b^2x^4-a^2b^2x^2+a^2=0
a^4b^4-4a^2b^2=0
a^2b^2=4
ab=2
b^2x^4-4x^2+a^2=0
(2/a)^2x^4-4x^2+a^2=0
4x^4-4a^2+a^4=0
(2x^2-a^2)^2=0
x^2=a^2/2
x>0
x=a/2^1/2,y=2^1/2/a P(a/2^1/2,2^1/2/a)
2.AB=2c=2(a^2-b^2)^1/2
S=1/2AB*yp=1/2*2(a^2-b^2)^1/2*2^1/2/a=2^1/2*(a^2-b^2)^1/2/a=2^1/2(a^2-(2/a)^2)^1/2/a
S^2=2(a^2-4/a^2)/a=2(a-4/a^3) 丹增
ab=2
a>b>0
a>2/a
a^2>2
a>2^1/2
S^2>2(2^1/2-4/2^3/2)
3.
g(a)=c^2=a^2-b^2=a^2-(2/a)^2
g(a)=s(a)
a^2-(2/a)^2=2^1/2*(a^2-b^2)^1/2/a=2^1/2(a^2-4/a^2)^1/2/a
a^2-(2/a)^2=2/a^2
a^4-4=2
a^4=6
a=6^1/4
f(a)=S(a) a>=6^1/4
g(a) 2^1/2

已知椭圆C:x2/a2+y2/b2=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上 (1)求c1的方程 (2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程 已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2 已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为 已知椭圆C1:x2/a2+y2/b2=1(a>b>0)的离心率为 3分之根号3,直线l:y=x+2与以原点为圆心,以椭圆c1的短半轴长为圆半径相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点F1,右焦点F2,直线l1过点F1且垂直 设椭圆x2/a2+y2/b2=1(a>b>0)的离心率为e=1/2,右焦点F(c,0),方程a 设椭圆C1的方程x2/a2+y2/b2=1(a>b>0),曲线C2的方程y=1/x ,且C1与C2在第一象限内只有一个公共点P.(1)试用a表示点P的坐标;(2)设A.B是椭圆C1的两个焦点,当a变化时,求三角形ABP的面积函数S(a)的值域(3) 设AB分别为椭圆x2/a2+y2/b2=1(a>b>0)的左右顶点,椭圆长半轴的长等于焦距,且a2/c=4,求椭圆方程. y2/a2+x2/b2=1(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1,求椭圆C1的y2/a2+x2/b2=1(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1,求椭圆C1的方程 如果一个椭圆和椭圆x2/a2+y2/b2=1(a>0,b>0)共焦点,那么它的方程可设为x2/m+y2/[m-(a2-b2)]=1(m>a2-b2)如果焦点在Y轴,所设的共焦点椭圆方程,是不是只需要把上面的x2和y2换个位置?②,这个结论是如何推导 椭圆C1:x2/a2+y2/b2=1(a>b>0)的上下焦点分别为F1、F2其中F1也是抛物线C2:x2=4y的焦点,点A是曲线C1与C2在第二象限的交点,且|AF1|=5/3求椭圆C1的方程已知点p是椭圆C1上的动点,MN是园(x+b)2+y2=b2的直径, 已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程 已知椭圆C1:x2/a2+y2/b2=1的左右两焦点为F1,F2,离心率为1/2,抛物线C2:y2=4mx(m>0)与椭圆C1有公共焦点F2(1,0),求椭圆和抛物线方程. 如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.因为C1,C2的离心率相同,故依题意可设故依题意可设C1:x2 /a2 +y2/ b2 =1,C2:b2y2/ a4 +x2 /a2 =1,(a> 椭圆X2/a2+y2/b2=1在点(x0,y0)处的切线方程为xx0/a2+yy0/b2=1,为什么? 已知椭圆C1:X2/a2+Y2/b2的一条准线方程为x=25/4,其左右顶点分别是A、B.双曲线C2:X2/a2-Y2/b2=1,双曲线的一条渐近线方程为3x-5y=0问:在第一象限内取双曲线C2上的一点P,连接AP交椭圆C1于点M,连接PB并 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 已知椭圆c1:x2/a2+y2/b2=1(a>b>0)与双曲线c2:x2已知椭圆c1:x2/a2+y2/b2=1(a>b>0)与双曲线c2:x2-y2/4=1有公共焦点,c2的一条渐近线与以c1的长轴为直径的园交于A.B两点.若c1恰好将线段AB三等分 得.b^2=0.5 C2的 设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,过点F且与x轴垂直的直线被椭圆截得的线段长为4倍根号3/3.(1)求椭圆的方程.(2) 设A