设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:51:06
设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
因为|OP|=根号7乘a ,设P(x,y) x^2+y^2=7a^2 x^2/a^2--y^2/b^2=1
y^2=6(ab)^2/(b^2+a^2)=6(ab)^2/c^2
因为∠F1PF2=60° 设F1P与X轴夹角为a1 tana1=y/(x+c)
设F2P与X轴夹角为a2 tana2=y/(x--c) a2--a1=60
tan60=根3=tan(a2--a1)=[y/(x--c)-y/(x+c)]/[1+y/(x--c)*y/(x+c)]=2yc/(x^2+y^2--c^2)=
根3=2yc/(7a^2--c^2) y=根3(7a^2--c^2)/2c y^2=3(7a^2--c^2)^2/4c^2=6(ab)^2/c^2
(6a^2--b^2)^2=8(ab)^2 6a^2--b^2=2根2ab b=√2a b=--3v2a
设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1
设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1
解析几何题 设o为坐标原点,F1 F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的焦点,设o为坐标原点,F1 F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的焦点,若在椭圆上存在点P,满足角F1PF2=60度,OP=根号3/2*a,则该椭圆的离心率为
设O为原点坐标,F1 F2是双曲线x^/a^-y^/b^=1两焦点,若双曲线存在点P,满足∠F1PF2=60° OP的长度为根号7a,求双曲线的渐近线方程
设O为原点坐标,F1 F2是双曲线x^/a^-y^/b^=1两焦点,若双曲线存在点P,满足∠F1PF2=60° OP的长度为根号7a,求双曲线的渐近线方程
设O为坐标原点,F1、F2为双曲线x^2/a^2-y^2/b^2=1的焦点(存在点P,使得角F1PF2=60°OP=根号10a,求渐近线方程
设O为坐标原点,F1、F2为双曲线x^2/a^2-y^2/b^2=1的焦点(存在点P,使得角F1PF2=60°OP=根号7a,求渐近线方设O为坐标原点,F1、F2为双曲线x^2/a^2-y^2/b^2=1的焦点(a>0,b>0),若双曲线上存在点P,使得角F1PF2=60°OP=
设椭圆C:x²/a²+y²/2=1的左右焦点分别为F1,F2,A是椭圆C上的一点,且向量AF2×向量F1F2=0,坐标原点O到直线A设椭圆C:x²/a²+y²/2=1的左右焦点分别为F1,F2,A是椭圆C上的一点,且向
设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原...设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点
设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原...40设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点
已知F1,F2分别是是椭圆x^2/16+y^2/7=1的左右焦点,A为椭圆一点,M为AF1中点,N为AF2中点,O为坐标原点,|OM||ON|的最大值为
设F1,F2,为椭圆X^2/9+Y^2/4=1的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求|PF1|/|PF2|的值.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线Y=X+1与椭圆交于P和
设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
设o为坐标原点,F1,F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的交代呢,若在双曲线上存在点P,满足∠F1PF2=60°,|op|=(√7)a,则该双曲线的渐近线方程为
已知F1,F2是双曲线X^2/a^2-y^2=1的左右两个焦点,点P在双曲线右支上,O为坐标原点,三角形POF2是面积为1已知F1,F2是双曲线X^2/a^2-y^2=1(a,b都大于0)的左右两个焦点,点P在双曲线右支上,O为坐标原点,三
已知F1,F2分别是(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的圆与双曲线在第已知F1,F2分别是双曲线(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的
设F1,F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右两个焦点,若双曲线右支上存在一点P,是(OP向量-OF2向量)×F2P向量=0(O为坐标原点)且|PF1|=根号3|PF2|,则双曲线的离心率是?这个条件没问题,