已知双曲线x^2-y^2=2的右焦点为F,过点F的动直线与双曲线香蕉于A.B两点,点C的坐标是(1,0)→ → (1)证明 CA .CB 为常数 → → → → (2)若动点M满足CM=CA+CB+CO(O为原点),求M的轨迹方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:59:36
已知双曲线x^2-y^2=2的右焦点为F,过点F的动直线与双曲线香蕉于A.B两点,点C的坐标是(1,0)→ → (1)证明 CA .CB 为常数 → → → → (2)若动点M满足CM=CA+CB+CO(O为原点),求M的轨迹方程
已知双曲线x^2-y^2=2的右焦点为F,过点F的动直线与双曲线香蕉于A.B两点,点C的坐标是(1,0)
→ → (1)证明 CA .CB 为常数 → → → → (2)若动点M满足CM=CA+CB+CO(O为原点),求M的轨迹方程
已知双曲线x^2-y^2=2的右焦点为F,过点F的动直线与双曲线香蕉于A.B两点,点C的坐标是(1,0)→ → (1)证明 CA .CB 为常数 → → → → (2)若动点M满足CM=CA+CB+CO(O为原点),求M的轨迹方程
(1)显然a=√2且b=√2.因此c=√(a^2+b^2)=2.F是(2,0).而双曲线右支的准线l是x=1.设A的坐标是(u,v),B的坐标是(u',v'),则(u-2)/v=(u'-2)/v'.向量CA与向量CB的数量积为(u-1)(u'-1)+vv'=uu'+vv'-u-u'+1.令u-2=kv,则u'-2=kv'.显然v和v'是方程(k-1)x+4kx+2=0的根.由于双曲线的渐近线是y=x和y=-x,所以要想动直线和双曲线有两个交点必有-1
已知抛物线y^=4x焦点F恰好是双曲线x^/a^-y^/b^=1的右焦点,且双曲线过点(3a^/2,b)则该双曲线的渐近线方程为
已知双曲线x^2-y^2=1的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线(2013绍兴市模拟)已知双曲线x^2-y^2=1(a>0,b>0)的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线
已知两双曲线的右准线为x=4,右焦点F(10.0),离心率为e=2,求双曲线的方程?
已知点F为双曲线x^2/16-y^2/9=1右焦点,M是双曲线右支上的一动点,A(5,4),求4已知点F为双曲线x^2/16-y^2/9=1右焦点,M是双曲线右支上的一动点,A(5,4),求4MF-5MA的最大值
已知中心在原点的双曲线c的右焦点为抛物线Y^2=8x的焦点,右顶点为椭圆X^2/3+Y^2/2=1的右顶点.求该双曲线?
已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过点F且倾斜角60度的直线与双曲线的右支只有一个交点已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过点F且倾斜角60度的直线与双曲线的右支
已知双曲线3x^2-y^2=12的中心为O,左、右焦点为F1、F2,左、右顶点分别为A1、A2.求双曲线的实轴长,...已知双曲线3x^2-y^2=12的中心为O,左、右焦点为F1、F2,左、右顶点分别为A1、A2.求双曲线的实
已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过x轴正半轴且倾斜角60度的直线与双曲线的右支只有一已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过点F且倾斜角60度的直线与双曲线的右支只
求一道关于双曲线的题..已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0>)双曲线右焦点为F,过F且斜率为√3的直线交双曲线于A.B两点,且AB的中点D为(4,2),则此双曲线两焦点的距离为
已知f是双曲线x^2/5-y^2/4=1的右焦点,点P早双曲线上,点q在圆(x-8)^2+(y-2)^2=1上,则|PF|+|PQ|的最小值为?
过双曲线x^2/3-y^2/6=1的右焦点F倾斜角为30度的直线交双曲线于A,B两点求|AB|
已知双曲线x^2/9-y^2/a=1的右焦点为(根号13,0),则该双曲线的渐进线方程为
已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,求此双曲线的标准方程
已知双曲线x^2/a^2-y^2/b^2=1过右焦点F作一条渐近线的垂线与双曲线交于M垂足为N若M为FN的中点,离心率为?
1、 已知F为双曲线 x^2/a^2 - y^2/b^2 =1 (a>0 b>0) 的右焦点,点P为双曲线右支上一点,以线段PF为直径的圆与圆 x^2+y^2=a^2的位置关系是( )A、 相交 B、 相切 C、 相离 D、不确定2、已知双曲线的两个焦点F
已知双曲线x^2/4-y^2/5=1,F为右焦点,A点坐标为(4,1),点P为双曲线上一点,求PA+2/3PF的最小值
已知双曲线X^2/9 - Y^2/16=1 ,过其右焦点F的直线交双曲线于PQ两点,PQ的垂直平分线交X轴于点M,则|MF|/|PQ|的值为多少?
已知点F为双曲线X^2/16-Y^2/9=1的右焦点,M是双曲线右支上一动点,又点A的坐标是(5,1),则4MF+5MA的最小值为