设f1f2是双曲线c:x^2/a^2-y^2/b^2=1的两焦点,p是c上一点,若绝对值pf1+绝对值pf2=6a.且三角形pf1f2的最小内角为30º,则离心率?求详解,甚感激!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:44:24

设f1f2是双曲线c:x^2/a^2-y^2/b^2=1的两焦点,p是c上一点,若绝对值pf1+绝对值pf2=6a.且三角形pf1f2的最小内角为30º,则离心率?求详解,甚感激!
设f1f2是双曲线c:x^2/a^2-y^2/b^2=1的两焦点,p是c上一点,若绝对值pf1+绝对值pf2=6a.且三角形pf1f2的最小内角为30º,则离心率?求详解,甚感激!

设f1f2是双曲线c:x^2/a^2-y^2/b^2=1的两焦点,p是c上一点,若绝对值pf1+绝对值pf2=6a.且三角形pf1f2的最小内角为30º,则离心率?求详解,甚感激!
看图

设F1F2是双曲线x^2/a^2 - y^2/b^2 = 1.的左右焦点,点P在双曲线上,若向量PF1点乘向量PF2=0,且他们的模之积为2ac,则双曲线的离心率是?A(1+根号5)/2 B(1+根号3)/2 C.2 D(1+根号2)/2 设F1F2是双曲线x^2/a^2 设f1f2和f2为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,若f1、f2、p(0,2b)是正三角形的三个顶点,则双曲线离心率是? 设P是等轴双曲线x^2-y^2=a^2(a>0)右支上一点,F1,F2是左右焦点,若向量PF2*F1F2=0,|PF1|=6,双曲线方程? 设p为等轴双曲线为x^2-y^2=a^2(a>0)右支上的一点,F1F2是左右焦点,若向量PF1乘以PF2=0,向量PF2=6,求双曲求双曲线方程. 已知F1F2双曲线x^2/a-y^2/b=1(a>0,b>0)的两个焦点,以线段F1F2为边作正三角行已知F1F2双曲线x^2/a-y^2/b=1(a>0,b>0)的两个焦点,若双曲线恰好平分正三角形的另两遍,则离心率是?方程输错了 应该是:x^2/a^2-y 求设P为双曲线X^2-Y^2上的一点,F1F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为...求设P为双曲线X^2-Y^2上的一点,F1F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为 设F1、F2分别为双曲线x^2/a^2-y^2/b^2=1的左右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为A.3x±4y=0B.3x±5y=0C.4x±3y=0D.5x±4y=0勾股怎 设F1.F2分别为双曲线x^2/a^2-y^2/b^2=q的左右焦点,若在双曲线的右之上存在点p,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,这该双曲线的渐进线方程是, 设f1f2是双曲线c:x^2/a^2-y^2/b^2=1的两焦点,p是c上一点,若绝对值pf1+绝对值pf2=6a.且三角形pf1f2的最小内角为30º,则离心率?求详解,甚感激! 设F1F2是双曲线X方/4减Y方的焦点,点P在双曲线上,且 设F1,F2是双曲线y^2/a^2-x^2/b^2=1(a>0,>0)是上下焦点,若在双曲线的上支上,存在点P满足/PF2/=/F1F2/,且F2到直线PF1的距离等于实轴长,求改双曲线的离心率 设F1F2是双曲线x^2/4-y^2=1的两个焦点,P在双曲线上,当△F1PF2的面积为1时,向量PF1向量PF2等于多少 设F1f2为双曲线X平方/2-4平方/y=1.的两个焦点,点P在双曲线上且满足角F1pf2=90度,则三角形F1pf2的面积是 已知点F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,以线段F1F2为边作正三角形MF1F2.若边MF1的中点在双曲线上,则双曲线的离心率是多少 设f1f2为双曲线x^2/4-y^2=1的两个焦点,点p在双曲线上且pf1垂直pf2,则三角形pf1f2的面积是多少?有个疑问,在双曲线定义中平面内到两定点f1f2距离之差的绝对值等于常数的点的轨迹,其中常数是多 双曲线x^2/a^2-y^2/b^2=1的左右焦点是F1F2作倾斜角30°的 F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2F1,F2 是双曲线x^2/a^2-y^2/b^2=1的焦点,若双曲线右支存在P点,满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2相切 ,则该双曲线的渐近线方程 F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|F1,F2 是双曲线x^2/a^2-y^2/b^2=1的焦点,若双曲线右支存在P点,满足|PF2|=|F1F2|且PF1与圆x^2+y^2=a^2相切 ,则该双曲线的渐近线方程为4x±3y=0