设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比.解题过程急等,加分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:20:18

设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比.解题过程急等,加分
设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比.解题过程
急等,加分

设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比.解题过程急等,加分
设∠AOC=Φ1,∠BOC=Φ2
由OA+2向量OB+3向量OC=0可知,OA和2倍OB的合向量与3倍OC向量等值反方向
根据平行四边形法则作向量OA,2倍OB的和是向量OC'
在△AOC'中,根据正弦定理
|OA|/sin(PAI-Φ2)=2|OB|/sin(PAI-Φ1)=|OC'|/sin[PAI-(PAI-Φ2)-(PAI-Φ1)]
|OA|/sinΦ2=2|OB|/sinΦ1=-|OC'|/sin(Φ2+Φ1)
|OA|/sinΦ2=|OB|/[(1/2)sinΦ1]=|OC|/[-(1/3)sin(Φ2+Φ1)].①
∴S△ABC:S△AOC=(S△AOB+S△BOC+S△AOC):S△AOC
=[|OA|*|OB|sin(Φ2+Φ1)/2+|OB|*|OC|sinΦ2/2+S△AOC]:(|OA|*|OC|sinΦ1/2)
=|[(|OB|sin(Φ2+Φ1)/2):(|OC|sinΦ1/2)]|+|[(|OB|sinΦ2/2):(|OA|sinΦ1/2)]|+1.②
将①中求得的|OB|:|OC|和|OB|:|OA|代入②中,可求得
S△ABC:S△AOC=|-3/2|+1/2+1=3(面积比不能是负数,要求绝对值)

过A点作OB的平行线,在平行线上取线段AD,使得AD=2OB,延长OB至E使得BE=OB,因为AD平行且等于OE,四边形ADEO为平行四边形,对角线OD=OA+AD=OA+OE=OA+2OB=-3OC,所以三角形AOD的面积是三角形AOC面积的三倍,设三角形AOC面积为X,则三角形AOD的面积为3X,因为AD平行于OB,且AD=2OB,设CD与AB相交于F点,则有AF:FB=DF:FO=AD:OB...

全部展开

过A点作OB的平行线,在平行线上取线段AD,使得AD=2OB,延长OB至E使得BE=OB,因为AD平行且等于OE,四边形ADEO为平行四边形,对角线OD=OA+AD=OA+OE=OA+2OB=-3OC,所以三角形AOD的面积是三角形AOC面积的三倍,设三角形AOC面积为X,则三角形AOD的面积为3X,因为AD平行于OB,且AD=2OB,设CD与AB相交于F点,则有AF:FB=DF:FO=AD:OB=2:1,所以三角形AOF的面积为X,三角形ACF的面积为2X,因为AF:FB=2:1,所以三角形CFB面积为X,故三角形ABC总面积为3X,故两三角形面积之比为3:1

收起

设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比.解题过程急等,加分 设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比 (1)若O是△ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则△ABC的形状为(2)若D为三角形ABC的边BC的中点,△ABC所在平面内有一点P,满足向量PA+向量BP+向量CP=0向量,设|向量AP|/| 已知三角形ABC中,O为平面内一点,且设向量OA=向量a,向量OB=向量b,向量OC=向量c则满足条件(向量a+向量b)•向量AB=(向量b+向量c)•向量BC=(向量c+向量a)•向量CA时,O是三角形的什么 设O是三角形ABC内一点,且满足向量OA+2向量OB+3向量OC=0,求三角形ABC与三角形AOC的面积之比?给出的向量条件应如何转化运用? 已知O是三角形ABC所在平面内一点,且满足 向量OA+sinA(向量OB-向量OA)/(sinA+sinB)+sinB(向量OC-向量O...已知O是三角形ABC所在平面内一点,且满足向量OA+sinA(向量OB-向量OA)/(sinA+sinB)+sinB(向量OC-向量OA)/(sinB 若O是三角形ABC所在平面内的一点,且满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0,则三角形ABC为 已知:O为三角形ABC所在平面内一点,且满足|向量OA|平方+|向量BC|平方=|向量OB|平方+|向量CA|平方=|向量OC|平方+|向量AB|平方求证:点O是三条高的交点 O是三角形ABC的外心,E为三角形内一点,且满足向量OE=向量OA+向量OB+向量OCRT 求证 向量AE垂直于向量BC (或者说求证E时垂心) 若O是三角形ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则三角形ABC的形状是...若O是三角形ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则三角形ABC的 已知O为三角形ABC所在平面内一点,且满足(向量OB-向量OC)点积(向量OB-向量OA)=0,试判断三角形ABC的形状 若O为三角形所在平面内一点,且满足(向量OB—向量OC)•(向量OB+向量OC—2向量OA)=0,则三角形ABC的形 已知o为三角形ABC所在平面内一点且满足向量oa+2向量ob+3向量oc=零向量,则三角形AOB与三角形AOC的面积比是多少 O为三角形ABC的外心,H为平面内的一点,且满足,向量OH向量=OA+向量OB+向量OC.求证H为ABC的垂心 O为三角形ABC一点.且满足向量OA+向量OB+向量OC=.则点O为该三角形的什么心 已知O为三角形ABC内的一点,且向量OA加上向量OB加上向量OC等于零,求证O是三角形ABC的重心 O为三角形ABC所在的平面内一点,且满足向量OA+2向量OB+3向量OC=0,则三角形AOC与三角形BOC的面积之比为2 :1,这是为什么? 设O为△ABC所在平面内一点,且满足向量OA的模的平方加上向量OB模的平方等于向量OB模的平方加上向量CA模的