已知f*x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),f(2)=1,解不等式f(x)-f(1/x-3)小于等于2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:16:16

已知f*x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),f(2)=1,解不等式f(x)-f(1/x-3)小于等于2
已知f*x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),f(2)=1,解不等式f(x)-f(1/x-3)小于等于2

已知f*x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),f(2)=1,解不等式f(x)-f(1/x-3)小于等于2
这种题目 取个符合条件的特殊函数就行
如f(x)=log(2)x 以2为低的对数函数
问题就变的很简单 x>0 .由定义域得
x-3>0.由定义域得
x(x-3)

∵f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),
∴f(1)=f(1/1)=f(1)-f(1)=0
f(xy)=f[x/(1/y)]=f(x)-f(1/y)
f(1/y)=f(1)-f(y)=-f(y)
∴f(xy)=f(x)+f(y)
∵f(2)=1
∴f(4)=f(2×2)=f(2)+f(2)=2

全部展开

∵f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),
∴f(1)=f(1/1)=f(1)-f(1)=0
f(xy)=f[x/(1/y)]=f(x)-f(1/y)
f(1/y)=f(1)-f(y)=-f(y)
∴f(xy)=f(x)+f(y)
∵f(2)=1
∴f(4)=f(2×2)=f(2)+f(2)=2
∴f(x)-f(1/x-3)≤2
即f(x(x-3))≤2
即(x(x-3))≤4
即(x-4)(x+1)≤0
解得x∈(-1,4)

收起

已知定义在R上的偶函数f(x)在区间[0,+∞)是单调增若f(1) 已知f(x)是定义在(0,+∞)上的增函数,集合A={x|(x-2)/(x-1) 已知f(x)是定义在(0,+∞)上的增函数,求当f(x)>f[(8(x-2)]时,x的取值范围 已知f(x)是定义在[-1,1]上的增函数,且f(x-2) 已知f(x)是定义在[-1,1]上的增函数,且f(x-1) 已知:f(x)是定义在[-1,1]上的增函数,且f(x-1) 已知f(x)是定义在【-1,1】上的增函数,且f(x-1) 已知f(x)是定义在(0,+∞)上的增函数,f(2)=1,且对任意实数x,y满足f(x·y)=f(x)+f(y),解不等式f(x)+f(x-2) 已知f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),若f(6)=1,解不等式f(x-3)-f(1/x) 已知f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y).若f(6)=1,解不等式f(x+3)-f(1/x) 已知f*x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),f(2)=1,解不等式f(x)-f(1/x-3)小于等于2 已知f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),若f(6)=1,解不等式f(x-3)-f(1/x) 已知f(x)是定义在R上的偶函数,当x>0时,f(x)为增函数,求解不等式f(2x)>f(3x-1) 已知f(x)是定义在(0,正无穷)上的增函数且f(x/y)=f(x)-f(y).求f(1)的值. 已知函数y=f(x)是定义在R上增函数,则f(x)=0的根 已知函数f(x)是定义在(0,+∞)上的减函数,fx(xy)=f(x)+f(y) ,f(1/3)=1.f(x) 已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1 求不等式f(x)-f(x-2)>3的解集 已知函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.则不等式:f(x)+f(x-3)