lim(x→0)(cosx)^[4/(x^2)]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:17:12
lim(x→0)(cosx)^[4/(x^2)]
lim(x→0)(cosx)^[4/(x^2)]
lim(x→0)(cosx)^[4/(x^2)]
令原式=y
则lny=4ln(cosx)/x^2
x→0,ln(1+x)和x是等价无穷小
所以ln(cosx)~cosx-1
而1-cosx和x^2/2是等价无穷小
所以cosx-1~-x^2/2
所以lim(x→0)lny=lim(x→0)4(-x^2/2)/x^2=-2
所以lim(x→0)y=1/e^2
lim(x→0)(cosx)^[4/(x^2)]
lim(x→0)(cosx)^4/x^2 怎么解
求Lim(x→0)(sinx/x)^(cosx/1-cosx)
lim(x→0)(1/cosx)=?
求lim(1-cosx)/x^2求lim(1-COSX)/X^2X→0
lim(x→0)(cosx-cos^2x)/x^2
lim(x→0) 1-cosx/x+x
lim(x→0)(e^x-cosx)/x=1?
lim(x→0) (e^x-cosx)/x
lim(x-cosx)/x x→-∞
求极限lim(x→0)x²/1-cosx
lim(x→0)(cosx)^(1/ln(1+x^2))
lim x→0[ln(cosx)]/x^2
求极限lim(x→0)(cosx-(1/x))
lim((x→0) (sinx/x)^1/(1-cosx)
lim(x—0) (1-cosx)/x
limx→0(cosx)^(1/x^2)求解lim(x→0)((cosx)^(1/x^2))
lim(x→0)〖(∫[cosx,0](e^t-t)dt/x^4 〗