已知双曲线的中心在原点,焦点F1、F2在坐标轴上,其中渐近线方程为x^2-y^2=0,且过(4,-根号10)(1) 求双曲线方程(2)若点M(3,m)在双曲线上,求证MF1垂直MF2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:19:00

已知双曲线的中心在原点,焦点F1、F2在坐标轴上,其中渐近线方程为x^2-y^2=0,且过(4,-根号10)(1) 求双曲线方程(2)若点M(3,m)在双曲线上,求证MF1垂直MF2
已知双曲线的中心在原点,焦点F1、F2在坐标轴上,其中渐近线方程为x^2-y^2=0,且过(4,-根号10)
(1) 求双曲线方程
(2)若点M(3,m)在双曲线上,求证MF1垂直MF2

已知双曲线的中心在原点,焦点F1、F2在坐标轴上,其中渐近线方程为x^2-y^2=0,且过(4,-根号10)(1) 求双曲线方程(2)若点M(3,m)在双曲线上,求证MF1垂直MF2
(1) 设所求双曲线的标准方程为:x^2/a^2-y^2/b^2=1.
由渐近线方程,得:b/a=±1, b=±a,
且双曲线过(4,-√10), 故4^2/a^2-(-√10)^2/b^2=1.,
16/a^2-10/(a)^2=1.
a^2=6, b^2=a^2=6,
∴x2-y^2=6. ---- (等轴双曲线), 即为所求.
(2).由于c^2=a^2+b^2=6+6=12, c=±2√3.
将M(3,m)代入x^2-y^2=6 中,得:
m=±√3
M(3,√3), 或M(3,-√3).
|MF1|^2=(3+2√3)^2+(√3-0)^2=24+12√3.
|MF2|^2=(3-2√3)^2+(√3-0)^2.=24-12√3..
|F2F1^2|=(2*2√3)^2=48.
|MF1|^2+|MF2|=48.
|MF1|^2+|MF2|^2=|F2F1|^2.
∴MF1⊥MF2.
证毕.

已知双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别在左右焦点,双曲线的右支上有一点P,已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△ 已知双曲线的中心在坐标原点,焦点在x轴,F1,F2分别为左右焦点,双曲线的右支上有1点已知双曲线的中心在坐标原点,焦点在x轴,F1,F2分别为左右焦点,双曲线的右支上有1点P。∠F1PF2=π/3,S△PF1F2=2 已知双曲线的中心在原点,焦点为F1(0,-2根号2).F2(.,2根号3) 离心率e=根号2求双曲线的标准方程 已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根2.且过点(4,-根10)已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根2.且过点M(4,-根10)(1)求双曲线方程(2)若点M(3.m)在双曲线上.求 已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,- 10 ). (1)求双曲线已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,- 10).(1)求 已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为√2 ,且过点(4,-√10) 1'已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为√2 ,且过点(4,-√10) 1' 求双曲线方程 2' 若点 (1/2)已知双曲线的中心在原点上,焦点F1,F2在坐标轴上,离心率为根号2,且过(4,-根号10).(1)求双曲...(1/2)已知双曲线的中心在原点上,焦点F1,F2在坐标轴上,离心率为根号2,且过(4,-根号10).(1)求双曲线 已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率e=(根号6/)2且过点(4-根号6) (1)求此双曲线方程...已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率e=(根号6/)2且过点(4-根号6)(1)求此双 双曲线数学题1.已知双曲线的方程是16x²-9y²=144设F1,F2是双曲线的左右焦点,点P在双曲线上,且|PF1||PF2|=32求角F1PF2的大小2.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过 已知双曲线的中心在原点,焦点f1,f2在坐标轴上,离心率为根2且过点(4...已知双曲线的中心在原点,焦点f1,f2在坐标轴上,离心率为根2且过点(4,-根10) 已知双曲线的中心在原点,焦点F1.F2在坐标轴上,离心率为根号下2,且过点(4,负根号下10) (1)求此双...已知双曲线的中心在原点,焦点F1.F2在坐标轴上,离心率为根号下2,且过点(4,负根号下10) 已知等轴双曲线的中心在原点,且一个焦点F1(-6,0),求等轴双曲线的方程 中心在原点的等轴双曲线,它的两个焦点F1、F2在x轴上,过F1作倾斜角为α的双曲线弦AB中心在原点的等轴双曲线,它的两个焦点F1、F2在x轴上,过F1作倾斜角为α的双曲线的弦AB,当α∈(π/4 ,3π/4 ) 中心在坐标原点的双曲线焦点F1,F2在x轴上,离心率为根号2,经过点P(4,-根号10).求双曲线方程 已知有公共焦点的椭圆与双曲线中心在原点.已知有公共焦点的椭圆与双曲线中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1 已知双曲线C的中心在原点且焦点在X轴上,过双曲线C的一个焦点且与双曲线有且只有一个交点的直线的方程为4x-3y+20=0.(1)求双曲线C的方程.(2)若过双曲线的左焦点F1任作直线L,与过右焦点F2的直 已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根2.且过点M(4,-根10) (1)求双曲线方程 (2)若点M(3 高中数学圆锥曲线 有公共焦点的双曲线和椭圆,中心均为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在有公共焦点的双曲线和椭圆,中心均为原点,焦点在x轴上,左右焦点分别为F1,F2,且