设f(x)=asin2x+bcos2x若f(x)小于等于f(π/6)的绝对值对一切x属于实数恒成立则f(x)的单调递增区间是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:55:38
设f(x)=asin2x+bcos2x若f(x)小于等于f(π/6)的绝对值对一切x属于实数恒成立则f(x)的单调递增区间是
设f(x)=asin2x+bcos2x若f(x)小于等于f(π/6)的绝对值对一切x属于实数恒成立则f(x)的单调递增区间是
设f(x)=asin2x+bcos2x若f(x)小于等于f(π/6)的绝对值对一切x属于实数恒成立则f(x)的单调递增区间是
设f(x)=asin2x+bcos2x=根号(a²+b²)sin(2x+φ)
因为 f(x)小于等于f(π/6)的绝对值对一切x属于实数恒成立
所以 x=π/6时 |sin(2x+φ)|=1
2π/6+φ=kπ+π/2
所以 φ=kπ+π/6 k∈Z
若k=2n,n∈Z,f(x)=根号(a²+b²)sin(2x+π/6)
由2nπ-π/2≤2x+π/6≤2nπ+π/2
得nπ-π/3≤x≤nπ+π/6
单调递增区间为[nπ-π/3 ,nπ+π/6] n∈Z
若k=2n-1,n∈Z,f(x)=根号(a²+b²)sin(2x-5π/6)
由2nπ-π/2≤2x-5π/6≤2nπ+π/2
得nπ+π/6≤x≤nπ+2π/3
单调递增区间为[nπ+π/6 ,nπ+2π/3] n∈Z
f(x)=asin2x+bcos2x=√(a^2+b^2)*sin(2x+C),其中tanC=a/b
|f(π/6)|=|√(a^2+b^2)*sin(π/3+C)|,
√(a^2+b^2)*sin(2x+C)<=|√(a^2+b^2)*sin(π/3+C)|,
sin(2x+C)<=|sin(π/3+C)|,
-1=
全部展开
f(x)=asin2x+bcos2x=√(a^2+b^2)*sin(2x+C),其中tanC=a/b
|f(π/6)|=|√(a^2+b^2)*sin(π/3+C)|,
√(a^2+b^2)*sin(2x+C)<=|√(a^2+b^2)*sin(π/3+C)|,
sin(2x+C)<=|sin(π/3+C)|,
-1=
C=π/6时,f(x)=asin2x+bcos2x=√(a^2+b^2)*sin(2x+π/6),单调递增区间是[-π/3+kπ,π/6+kπ]
C=-5π/6时,f(x)=asin2x+bcos2x=√(a^2+b^2)*sin(2x-5π/6),单调递增区间是[π/6+kπ,2π/3+kπ]
收起