(2^2-1)(2^2+1)(2^4+1)(2^8+1) 等于多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:25:39
(2^2-1)(2^2+1)(2^4+1)(2^8+1) 等于多少
(2^2-1)(2^2+1)(2^4+1)(2^8+1) 等于多少
(2^2-1)(2^2+1)(2^4+1)(2^8+1) 等于多少
原式=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1
=65536-1
=65535
(2^2-1)(2^2+1)(2^4+1)(2^8+1)
=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1
65535
(2^2-1)(2^2+1)(2^4+1)(2^8+1) =(2^4-1)(2^4+1)(2^8+1)=(2^8-1)(2^8+1)=2^16-1 =65535
=2^16-1=65535 用的是平方差公式(a-b)(a+b)=a^2—b^2
65535
=(2^4-1))(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1
1/2,1/4,
(1-1/2^2)(1-1/3^2)(1-1/4^2).(1-1/2009^2),
(2+1)({2}^{2}+1)({2}^{4}+1)({2}^{8}+1).({2}^{64}+1)+1
巧算((2^1+1)(2^2+1)(2^4+1)(2^8+1)+1)/2^15
计算(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.
(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)
(2+1)(2-1)(2^2+1)(2^4+1).(2^8+1)化简
(1+2)*(1+2^2)*(1+2^4)*(1+2^8)*(1+2^16)
化简(1+2)(1+2^2)(1+2^4)(1+2^8)(1+2^16)
化简(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^256+1)
(2-1)(2+1)(2^2+1)(2^4)...(2^64+1)+1=?
(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)
证明1+1/2^2;+1/3^2;+1/4^2+1/n^2小于2
(2+1)(2^2+1)(2^4+1)(2^8+1).(2^2048+1)=?
初中数学题&(1+2)*(1+2)^2*(1+2)^4*(1+2)^8*(1+2)^16
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
[(1+2^-(1/32)]*[(1+2^-(1/16)]*[(1+2^-(1/8)]*[(1+2^-(1/4)]*[(1+2^-(1/2)]