已知正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心,(1)求证:OE⊥面ACD1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:22:32
已知正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心,(1)求证:OE⊥面ACD1
已知正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心,(1)求证:OE⊥面ACD1
已知正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心,(1)求证:OE⊥面ACD1
证明:
在正方体中,
DD'⊥平面ABCD
∴DD'⊥AC,
在正方形ABCD中,AC⊥BD
∴AC⊥平面BDD'B'
因此,AC⊥OE
设正方体的边长为2,
∴DO=BO=√2,BE=EB'=1
∴D'O=√6,OE=√3,D'E=3
即是D'E²=D'O²+OE²
∴∠EOD'=90º,
即是OE⊥D'O
又OE⊥AC
∴OE⊥平面ACD'
2,由于AC⊥平面BDD'B'
∴∠AD'O就是AD'和平面BDD'B'所成的夹角
cos∠AD'O=D'O/AD'
D'O=√6,AD=2√2
∴cos∠AD'O=√6/(2√2)=√3/2
因此,AD1与平面BDD1B1所成角的余弦值就是√3/2.
正方体ABCD -A1B1C1D1中,给图
在正方体ABCD-A1B1C1D1中,求证:AC‖平面A1B1C1D1
已知棱长为1的正方体ABCD—A1B1C1D1中
已知正方体ABCD-A1B1C1D1中,棱长为1 求三角形A1BC的面积
已知正方体ABCD-A1B1C1D1中,连接BD1,AC,CB1,B1A,求证:BD1垂直平面AB1C
已知正方体ABCD-A1B1C1D1,求证B1D⊥平面A1BC1
已知正方体ABCD-A1B1C1D1,求证DB1垂直平面ACD1T
已知正方体ABCD-A1B1C1D1,求证平面AB1D1//平面C1BD
已知正方体ABCD -A1B1C1D1求证 A1C⊥平面BC1D已知正方体ABCD -A1B1C1D1 求证 A1C⊥平面BC1D
已知正方体abcd-a1b1c1d1求证AC1垂直于平面bc1d已知正方体abcd-a1b1c1d1求证A1C垂直于平面bc1d
在正方体ABCD-A1B1C1D1中,证明AC1与B1D1垂直
在正方体ABCD-A1B1C1D1中,求证;A1C⊥平面BDC1
在正方体ABCD-A1B1C1D1中,证明B1D1⊥面ACC1A1
在正方体abcd -a1b1c1d1中,求证平面ab1c//ac1d
在正方体ABCD-A1B1C1D1中,求证:A1C垂直面AB1D1
正方体ABCD-A1B1C1D1中求证AC垂直BD1
在正方体ABCD-A1B1C1D1中,求证:AC⊥BD1
正方体ABCD--A1B1C1D1中求证BD1垂直于平面AB1C