如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为 上一动点,AK,DC的延长线相交于点F如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为弧AC上一动点,AK,DC的延长线相交于点F,连接CK,KD.(1)求证:∠AKD=∠CKF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:26:09
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为 上一动点,AK,DC的延长线相交于点F如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为弧AC上一动点,AK,DC的延长线相交于点F,连接CK,KD.(1)求证:∠AKD=∠CKF
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为 上一动点,AK,DC的延长线相交于点F
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为弧AC上一动点,AK,DC的延长线相交于点F,连接CK,KD.
(1)求证:∠AKD=∠CKF;
(2)若AB=10,CD=6,求tan∠CKF的值.
主要是第二问、大家辛苦了、在线等
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为 上一动点,AK,DC的延长线相交于点F如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为弧AC上一动点,AK,DC的延长线相交于点F,连接CK,KD.(1)求证:∠AKD=∠CKF
1.连接AD,AC
FD*FC=FK*FA
所以△FKC∽三角形FDA
∴∠CKF=∠FDA
AB为⊙O的直径,弦CD⊥AB
AD=AC
∠ACD=∠FDA
同弧AD
∠AKD=∠FDA
所以∠AKD=∠CKF
2.连接OD
OD=5,DE=3,OE=4
AE=9
tan∠CKF=tan∠FDA=9/3=3
很高兴为您解答,【学习宝典】团队为您答题.
请点击下面的【选为满意回答】按钮,
摘自,2012 威海
收起
(1):证明:
联结BK,因为AB是直径,所以∠AKB=∠BKF=90°
因为弦CD⊥AB,AB是直径,所以劣弧DB=劣弧BC,∠DKB=∠BKC
因为:∠FKC,∠AKD分别是∠BKC,∠DKB的余角,
所以:∠FKC=∠AKD。
(2):连接AC,OC。因为OC=10/2=5,CE=6/2=3,所以OE=4.因为∠ACD=∠AKD=∠CKF,所以tan∠...
全部展开
(1):证明:
联结BK,因为AB是直径,所以∠AKB=∠BKF=90°
因为弦CD⊥AB,AB是直径,所以劣弧DB=劣弧BC,∠DKB=∠BKC
因为:∠FKC,∠AKD分别是∠BKC,∠DKB的余角,
所以:∠FKC=∠AKD。
(2):连接AC,OC。因为OC=10/2=5,CE=6/2=3,所以OE=4.因为∠ACD=∠AKD=∠CKF,所以tan∠CKF=tan∠ACE=9/3=3。
我觉得我的答案更好理解啊。
收起
1.连接AD,AC
FD*FC=FK*FA
所以△FKC∽三角形FDA
∴∠CKF=∠FDA
AB为⊙O的直径,弦CD⊥AB
AD=AC
∠ACD=∠FDA
同弧AD
∠AKD=∠FDA
所以∠AKD=∠CKF
2.连接OD
OD=5,DE=3,OE=4
AE=9
tan∠CKF=tan∠FDA=9/3=3