四面体ABCD中,O.E分别是BD.BC的中点,CA=CB=CD=BD=2,AB=AD=根号2.求证AO垂直平面BCD 请用空间向量证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:39:15
四面体ABCD中,O.E分别是BD.BC的中点,CA=CB=CD=BD=2,AB=AD=根号2.求证AO垂直平面BCD 请用空间向量证明
四面体ABCD中,O.E分别是BD.BC的中点,CA=CB=CD=BD=2,AB=AD=根号2.求证AO垂直平面BCD 请用空间向量证明
四面体ABCD中,O.E分别是BD.BC的中点,CA=CB=CD=BD=2,AB=AD=根号2.求证AO垂直平面BCD 请用空间向量证明
这里提供一种几何解法
根据条件得到,三角形 ABD是等腰,BCD 等边
所以 AO垂直于BD,CO垂直于BD
同时根据2种三角形的性质,容易算出 AO=1,CO=根号3,AC=2(已知)
由此算出 角AOC也是直角,所以 AO垂直CO
因为CO和BD交于O点,且2线都在平面BCD上
所以AO垂直于BCD
楼上的,这个题目用空间向量也太麻烦了吧,如果要这么做的话,E点的位置用不上啊。用一般的空间几何证明方法如下:
连接OC,AO因为AB=AD=根号2,BD=2,O为BD中点,所以,AO=1,且AO垂直BD
又BC=BD=CD=2,所以CO=根号3
又因为AC=2,根据勾股定理,角AOC为直角,即AO垂直OC
综上,AO垂直平面BCD
当然,很多汉字应该转化为符...
全部展开
楼上的,这个题目用空间向量也太麻烦了吧,如果要这么做的话,E点的位置用不上啊。用一般的空间几何证明方法如下:
连接OC,AO因为AB=AD=根号2,BD=2,O为BD中点,所以,AO=1,且AO垂直BD
又BC=BD=CD=2,所以CO=根号3
又因为AC=2,根据勾股定理,角AOC为直角,即AO垂直OC
综上,AO垂直平面BCD
当然,很多汉字应该转化为符号的,只是在这里转化不是很方便。建议提问者回顾一下线面垂直的判定定理
收起
因为BC=BD=CD=2,且O是BD的中点 所以OC=√3
因为AB=AD=√2,O是BD的中点 所以AO⊥BD,且BO=1,AB=√2 所以AO=1
因为AO=1,AC=2,OC=√3 所以AO⊥OC
因为AO⊥BD,AO⊥OC且BD,OC在平面BCD中,所以AO垂直平面BCD
向量和模的符号自己添