设a>b>0 求a^2+1/(ab)+1/[a(a-b)]的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:24:13
设a>b>0 求a^2+1/(ab)+1/[a(a-b)]的最小值
设a>b>0 求a^2+1/(ab)+1/[a(a-b)]的最小值
设a>b>0 求a^2+1/(ab)+1/[a(a-b)]的最小值
∵1/(ab)+1/[a(a-b)]=1/(ab)+1/(a^2-ab)=a^2/[ab(a^2-ab)]≥a^2*[2/(ab+a^2-ab)]^2=4/a^2
当且仅当a=2b时,等号成立
∴a^2+1/(ab)+1/[a(a-b)]≥a^2+4/a^2≥4
当且仅当a=√2时,等号成立
∴a^2+1/(ab)+1/[a(a-b)]的最小值为4.
设a>b>0 求a^2+1/(ab)+1/[a(a-b)]的最小值
设a>b>0,求a^2+1/ab+1/a(a-b)的最小值
设a>b>0,求a²+1/(ab)+1/(a(a-b))的最小值
设 a>b>0,则 求a²+1/ab+1/ a(a-b) 的最小值
设集合A{1,a,b,},B{a,a^2,ab},且A=B,求a^2013+b^2012
设a>b>0,求2a²+1/ab+1/a(a-b)最小值
设a>b,b>0,且a+2b=1,求ab的取值范围a>0
设A={1,a,b},B={2,a^2,ab},若A=B,求实数a,b
设a>b>c>0,则2a^2+1/ab+1/a(a-b)-10ac+25c^2 求最小值b(a-b)
设a>b>0,证明a^2+1/ab+1/a(a-b)>=4
设a>b>0则a^2+1/ab+1/a(a-b)的最小值是
设a>b>0,则a^2+1/ab+1/[a(a-b)]的最小值是?
设a>b>0,则a^2+(1/ab)+[1/a(a-b)]的最小值
设a>b>0,则a^2+(1/ab)+[1/a(a-b)]的最小值
设a>b>0,则a^2+1/(ab)+1/a(a-b)的最小值是多少?
设a※b=(1/a-1/b)+ab,求[1※(-2)]※4
设a>b>0,则a^2+1/(ab)+1/(a^2-ab)是最小值
设实数a、b满足a^2-8a+6=0及6b^2-8b+1=0,求ab+1/ab的值