观察下面的变形规律1/(1×2)=1-1/2;1/(2×3)=1/2-1/3;1/(3×4)=1/3-1/4;.(1)若n为正整数,请你猜想1/[n(n+1)]=?(2)证明你猜想的结论;(3)求和:1/(1×2)+1/(2×3)+1/(3×4)+.+1/(2009×2010)·
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:42:36
观察下面的变形规律1/(1×2)=1-1/2;1/(2×3)=1/2-1/3;1/(3×4)=1/3-1/4;.(1)若n为正整数,请你猜想1/[n(n+1)]=?(2)证明你猜想的结论;(3)求和:1/(1×2)+1/(2×3)+1/(3×4)+.+1/(2009×2010)·
观察下面的变形规律1/(1×2)=1-1/2;1/(2×3)=1/2-1/3;1/(3×4)=1/3-1/4;.
(1)若n为正整数,请你猜想1/[n(n+1)]=?
(2)证明你猜想的结论;
(3)求和:1/(1×2)+1/(2×3)+1/(3×4)+.+1/(2009×2010)·
观察下面的变形规律1/(1×2)=1-1/2;1/(2×3)=1/2-1/3;1/(3×4)=1/3-1/4;.(1)若n为正整数,请你猜想1/[n(n+1)]=?(2)证明你猜想的结论;(3)求和:1/(1×2)+1/(2×3)+1/(3×4)+.+1/(2009×2010)·
(1)
由
1/(1×2)=(1/1)-(1/2);
1/(2×3)=(1/2)-(1/3);
1/(3×4)=(1/3)-(1/4);
从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1
1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)证明:
等式右边=(1/n)-[1/(n+1)]
=(n+1)/[n(n+1)]-n/[n(n+1)]
=(n+1-n)/[n(n+1)]
=1/[n(n+1)]
=左边
所以等式成立
(3)求和:观察后可以发现好多项可以相互抵消
1/(1×2)+1/(2×3)+1/(3×4)+……+1/(2009×2010)
=1-1/2+1/2-1/3+1/3-1/4+-------+1/2008-1/2009+1/2009-1/2010
=1+(-1/2+1/2)+(-1/3+1/3)+(-1/4+-------+1/2008+(-1/2009+1/2009)-1/2010
=1-1/2010
=2009/2010
(1)若n为正整数,1/[n(n+1)]=1/n-1/(n+1)
(2)右边=1/n-1/(n+1)=(n+1)/n(n+1)-n(n(n+1)=1/n(n+1)=左边
(3)1/(1×2)+1/(2×3)+1/(3×4)+。。。。。。+1/(2009×2010)
=1-1/2+1/2-1/3+1/3-1/4+-------+1/2009-1/2010
=1-/2010
=2009/2010
1.=1/n-1/(n+1)2.因1/(1×2)=1-1/2;1/(2×3)=1/2-1/3;1/(3×4)=1/3-1/4所以1/n-1/(n+1)
3.=1-1/2+1/2-1/3……+1/2009-1/2010
=1-1/2010
=2009/2010
1/n-1/n+1
123=1/2×456=1/3×789
(1)
由
1/(1×2)=(1/1)-(1/2);
1/(2×3)=(1/2)-(1/3);
1/(3×4)=(1/3)-(1/4);
从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1
1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)证明:
等式右边=(1/n)-[1/(...
全部展开
(1)
由
1/(1×2)=(1/1)-(1/2);
1/(2×3)=(1/2)-(1/3);
1/(3×4)=(1/3)-(1/4);
从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1
1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)证明:
等式右边=(1/n)-[1/(n+1)]
=(n+1)/[n(n+1)]-n/[n(n+1)]
=(n+1-n)/[n(n+1)]
=1/[n(n+1)]
=左边
所以等式成立
(3)求和:观察后可以发现好多项可以相互抵消
1/(1×2)+1/(2×3)+1/(3×4)+……+1/(2009×2010)
=1-1/2+1/2-1/3+1/3-1/4+-------+1/2008-1/2009+1/2009-1/2010
=1+(-1/2+1/2)+(-1/3+1/3)+(-1/4+-------+1/2008+(-1/2009+1/2009)-1/2010
=1-1/2010
=2009/2010
收起