已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0若存在常数c,使f(c/2)=0.求证:对于任意x属于R,有f(x+c)=-f(x)成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 18:21:19

已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0若存在常数c,使f(c/2)=0.求证:对于任意x属于R,有f(x+c)=-f(x)成立
已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0
若存在常数c,使f(c/2)=0.求证:对于任意x属于R,有f(x+c)=-f(x)成立

已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0若存在常数c,使f(c/2)=0.求证:对于任意x属于R,有f(x+c)=-f(x)成立
令x=y=0,得2f(0)=2*[f(0)]^2 且f(0)不等于0
所以f(0)=1
令x=0 f(y)+f(-y)=2f(0)f(y),所以 f(x)为偶函数,从而
f(x+c)+f(x)=f(x+c)+f(-x)=2f(c/2)f(x+c/2)=0,
所以有f(x+c)=-f(x)成立

令x=x,y=c/2
则有f(x+c/2)+f(x-c/2)=2f(x)f(c/2)=0 (1)

再在上式中令x-c/2=t,则x+c/2=t+c
代入上式(1)中,有f(t+c)+f(t)=0
f(t+c)=-f(t)
由于x的定义域是全体实数,所以t的定义域也为全体实数,证毕!

已知f(x)是定义域在R上的减函数,对任意实数恒有f(kx)>f(x2-x-2),求k的取值范围 已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.求证f(0)=1 已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0求证f(0)=1 已知函数y=f(x)在定义域R上是单调减函数,且对任意x∈R.f(a+x)>f(x)恒成立 则实数a的取值范围是 已知定义域在R上的函数f(x)对任意实数x.y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义域在R上的函数f(x)对任意实数x.y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义域在R上的函数f(x)对任意实数x.y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义域R的函数f(x)在(负无穷.5)上单调递减.对任意实数t都在f(5+t)=f(5-t). 比较f(-1) f(9) f(13) 已知定义域为R的函数f(x)在(-∞,5)上单调递减,对任意实数t都有f(5+t)=f(5-t),则f(-1),f(9),f(-13)的大小 已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0若存在常数c,使f(c/2)=0.求证:对于任意x属于R,有f(x+c)=-f(x)成立 已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是A.f(-1) 已知函数f(x)的定义域为R,对任意实数m,n满足f(1/2)=2,且f(m+n)=f(m)+f(n)-1,当x>-1/2时f(x)>0求(1)f(-1/2)的值 (2)求证:f(x)在定义域R上单调递增 在定义域R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y由f(x+y)=f(x)*f(y)1 证明:当x 定义域在R上的函数f(x)满足对任意实数x,y,有f(x+y)=f(x)+f(y).当x>0时,f(x)0时,f(x)=-8 有关高中抽象函数问题~已知函数y=f(x)的定义域在实数集上,切对任意x,y属于R均有f(x+y)=f(x)+f(y),又对任意的x>0,都有f(x) 判断下列函数的奇偶性已知定义在r上的函数f(x)对任意实数x,y恒有f(x) f(y)=f(x y)打错了,题目是判断下列函数的奇偶性,已知定义在r上的函数f(x)对任意实数x,y恒有f(x)+ f(y)=f(x +y) 已知函数y=f(x)的定义域为R,且对任意两个不相等的实数x,y,都有f(x)-f(y)/x-y小于成立,则f(x)在R上的单调性为( )(填增函数、减函数或非单调函数). 已知函数y=f(x)的定义域为R,且对任意实数x恒有2f(x)+f(-x)+2^x=0成立,1).求f(x)的解析式2).讨论f(x)在R上的单调性,并用函数单调性的定义予以证明