求直线y=x被圆(x-2)^2+(y-4)^2=10所截得的弦长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:32:01

求直线y=x被圆(x-2)^2+(y-4)^2=10所截得的弦长
求直线y=x被圆(x-2)^2+(y-4)^2=10所截得的弦长

求直线y=x被圆(x-2)^2+(y-4)^2=10所截得的弦长
圆心(2,4)
半径√10
圆心到直线x-y=0距离是|2-4|/√(1²+1²)=√2
即弦心距是√2
所以弦长=2√[(√10)²-(√2)²]=4√2