如何用尺规做图将一个角三等分?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:50:15
如何用尺规做图将一个角三等分?
如何用尺规做图将一个角三等分?
如何用尺规做图将一个角三等分?
三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一,即 用圆规与直尺把一任意角三等分.问题的难处在于作图使用工具的限制.古希腊人要求几何作图只许使用直尺 (没有刻度,只能作直线的尺)和圆规.这问题曾吸引着许多人去研究,但都无一成功.1837年凡齐尔( 1814-1848)运用代数方法证明了,这是一个标尺作图的不可能问题.
在研究「三等分角」的过程中发现了如蚌线、心脏线、圆锥曲线等特殊曲线.人们还发现,只要放弃「尺 规作图」的戒律,三等分角并不是一个很难的问题.古希腊数学家阿基米得(前287-前212)发现只要 在直尺上固定一点,问题就可解决了.现简介其法如下:在直尺边缘上添加一点P,命尺端为O. 设所要三等分的角是∠ACB,以C为圆心,OP为半径作半圆交角边于A,B;使O点在CA延在线移 动,P点在圆周上移动,当尺通过B时,连OPB(见图).由于OP=PC=CB,所以∠COB=∠AC B/3.这里使用的工具已不限于标尺,而且作图方法也与公设不合.
另有一机械作图的方法可以三等分角,简介如下:
如右图:ABCD为一正方形,设AB均匀向CD平行移动,AD以D为中心依顺时针方向转到DC,若AB抵达DC时DA也恰好抵达DC,则他们交点的轨迹AO即曲线称为三分线.
令A是AC弧上的任一点,我们要三等分 ADC,设DA与三分线AO交于R,过R作AB之并行线交AD、BC于A、B,令T、U是AD之三等分点,过T、U作AB之并行线交三分线AO于V、W,则DV、DW必将 ADC三等分.
www2.emath.pu.edu.tw/s8805106/hippias-all.htm
已被证明不可能实现任意角的三等分
除了特殊的角90 45 135 180
严格地用圆规来画办不到
特殊的能做到,但其它的不能。
严格的说,普通角是无法用尺规三等分的,这个在很久以前就有数学家证明过的
尺子有刻度可以,否则不行。
-----------------------------
cos(3x) = 4*(cosx)^3 - 3*cosx
sin(3x) = 3*sinx - 4*(sinx)^3
三分角等价于求解 cosx、sinx,没有普遍的代数解。
办不到
buxing