已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:56:39

已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率
已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率

已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率
题是不是错了,应该是右顶点为A.F(-c,0),A(a,0),又BF垂直于X轴,所以BF为通径的一半,即BF=b^2/a,设原点为O,画出图,易知三角形APO与三角形ABF相似,且相似比为AP/AB=2/3,则AO/AF=a/(a+c)=2/3,即a=2c,所以离心率e=c/a=1/2

已知双曲线 x2/a2-y2/b2=1的一个焦点与抛物线y2=4x的焦点重合,且焦点到双已知双曲线x2/a2-y2/b2=1的一个焦点与抛物线y2=4x的焦点重合,且焦点到双曲线的渐进线的距离为√3,则渐进线的方程为 过椭圆x2/a2+y2/b2=1的焦点垂直于X轴的弦长为a/2,则双曲线x2/a2-y2/b2=1的离心率为 已知双曲线 x2/a2-y2/b2=1的一个焦点与抛物线y2=4x的焦点重合x2/a2-y2/b2=1的一个焦点与抛物线y2=4x的焦点重合,且焦点到双曲线的渐进线的距离为√3,则渐进线的方程为 已知椭圆x2/a2+y2/b2=1有两个顶点在直线x+2y=2上,则此椭圆的焦点坐标是 已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,右焦点到直线x+y+√6=0已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,右焦点到直线x+y+√6=0的距离为2√3.求椭圆的方程;过点M(0,-1)作直线l 交椭圆于A 已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程 已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率 已知双曲线x2/a2-y2/b2=1的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为 已知双曲线x2/a2-y2/b2=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率为√5,则该双曲线方程为 垂直于X轴的直线交双曲线x2/a2-y2/b2=1于MN两点,A1 A2 为双曲线顶点,求直线A1M与A2N的焦点P的轨迹方程并且指出轨迹形状.咋算啊, 椭圆X2/a2+y2/b2=1(a>b>0)的左焦点F1作X轴的垂线叫椭圆于点P,F2为右焦点若∠F1PF2=60,则椭圆的离心率为 已知双曲线x2/a2-y2/b2=1(a>0,b>0)的一条渐近线方程是y=√3x,它的一个焦点在抛物线y2=24x的准线上则双曲线方程为 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 已知双曲线x2/a2-y2/b2=1与抛物线y2=8x有相同的焦点f,且该点到双曲线的渐近线距离为1则双曲线的方程为 已知椭圆x2/a2+已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为根号2/2其中左焦点F(-20)(1)求椭圆C的方程(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M关于直线y=x+1的对称点在圆x2+y2=1上,求m的值 已知双曲线x2/a2 - y2/b2=1,过其右焦点且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点,若OM⊥ON则双曲线的离心率为? 已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1...已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1(y>=0)内切于矩形ABCD,且CD交于y轴于点G,点P是半圆x2+y2=b2(y>=0 已知F1 F2 分别是双曲线X2/A2-Y2/B2=1的左右两个焦点已知F1 F2 分别是双曲线X2/A2-Y2/B2=1的左右两个焦点,点P在双曲线上满足|PF2|=|F1F2|,且直线PF1与圆X2+Y2=a2相切则双曲线的离心率e等于多少.(方程中