定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1②若n>m,f(m,n)=0 ③f(m+1,n)=n[f(m,n)+f(m,n-1)].则f(n,2)=()急求过程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:27:24
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1②若n>m,f(m,n)=0 ③f(m+1,n)=n[f(m,n)+f(m,n-1)].则f(n,2)=()急求过程
定义映射f:A→B,其中A={(m,n)|m,n∈R}
接着 B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1②若n>m,f(m,n)=0 ③f(m+1,n)=n[f(m,n)+f(m,n-1)].则f(n,2)=()
急求过程
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1②若n>m,f(m,n)=0 ③f(m+1,n)=n[f(m,n)+f(m,n-1)].则f(n,2)=()急求过程
若n
由③,①,f(m+1,2)=2[f(m,2)+f(m,1)]=2[f(m,2)+1],
∴f(m+1,2)+2=2[f(m,2)+2],
∴f(n,2)+2=2^(n-1)*[f(1,2)+2]=2^n(由②,f(1,2)=0),
∴f(n,2)=2^n-2.
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1②若n>m,f(m,n)=0 ③f(m+1,n)=n[f(m,n)+f(m,n-1)].则f(n,2)=()急求过程
一道关于映射的数学题!集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0.那么映射f:M→N的个数是多少?
已知集合M={a,b,c},N={0,1},映射f:M→N满足f(a)+f(b)=f(c),那么映射f:M→N的个数为否则无效.
已知集合M={a,b,c},N={-1,0,1},映射f:M到N,满足f(a)+f(b)=f(c),求映射个数
设集合M={a,b,c},N={-1,0,1}若从集合M到N得映射满足f(a)>f(b)大于等于f(c),则映射f:M→N的个数是多少?
在映射f:A→B中,A={4.7.11},B={m,n}符合条件的映射个数是
高一映射习题设M={a,b,c},N{-1,0,1},从M到N的映射f满足f(a)>f(b)>=f(c),试确定这样的映射f的个数为
设集合M=|a,b,c|,N=|0.1|,映射f:M到N满足f(a)+f(b)=f(c),则映射f:M到N的个数是 A.1 B.2 c.3 D.4
集合映射题目集合M={a,b,c},集合N={-1,0,1},由M到N的映射f满足条件f(a)+f(b)=f(c),这样的映射共有几个?恳请写出!
关于映射.设M=[a,b,c],N=[-1,0,1],若从M到N的映射满足:f(a)+f(b)=f(c),求这样的映射的个数.
设集合M={a,b,c},N={0,1},映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为()
设集合M=|a,b,c|,N=|0.1|,映射f:M到N满足f(a)+f(b)=f(c),则映射f:M到N的个数是
映射f :A→B,其中A={a,b,c},B={0,1,2},则满足f(a)=0的映射有多少个
已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)+f(b)+f(c)=0,从集合M到集合N的映射共有几个
广州必修一(急求答案):已知A=(a,b,c)B=(m,n)则f:A→B的映射共有( )个.
已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)-f(b)=f(c),那么映射f的个数有几个?要具体的步骤
集合M={a,b,c},N={-1,0,1}从M到N的映射f满足f(a)-f(b)=f( 1),那么映射f的个数是多少?
设M={a,b,c},N={-1,0,1},若从M到N的映射f满足:f(a)+f(b)=f(c),求这样的映射f的个数