若两个数列{an}{bn}的前n项和分别为Sn,Tn,且对任意的n∈N*都有Sn/Tn=(2n-3)/(4n-3),则a9/(b5+b7)+a3/(b8+b4)等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 18:37:59
若两个数列{an}{bn}的前n项和分别为Sn,Tn,且对任意的n∈N*都有Sn/Tn=(2n-3)/(4n-3),则a9/(b5+b7)+a3/(b8+b4)等于
若两个数列{an}{bn}的前n项和分别为Sn,Tn,且对任意的n∈N*都有Sn/Tn=(2n-3)/(4n-3),
则a9/(b5+b7)+a3/(b8+b4)等于
若两个数列{an}{bn}的前n项和分别为Sn,Tn,且对任意的n∈N*都有Sn/Tn=(2n-3)/(4n-3),则a9/(b5+b7)+a3/(b8+b4)等于
等差数列{an},{bn}的前n项和分别是Sn,Tn,且Sn/Tn=2n-3/4n-3求a9/(b5+b7)+a3/(b4+b8)
-------------
前n项和公式为:Sn=na1+n(n-1)d/2 (即二次函数形式)
故设:Sn= (2n--3) x kn ; Tn= (4n--3) x kn (k ≠0);
所以 Sn= 2kn^2 --3kn ;Tn=4kn^2 --3kn
所以:S6= 72k --18k= 64k ,S5= 50k--15k=45k ;则 a6=1/2(a3+a9)=S6--S5 =19k 即:a3+a9=38k
T6=144k--18k=126k,T5=100k--15k=85k;则b6 =1/2(b5+b7)=1/2(b4+b8)=T6--T5=41k
即:(b5+b7)=(b4+b8)=82k
所以:a9/(b5+b7)+a3/(b4+b8)= (a3+a9)/(b5+b7) =38k/82k= 19/41
-----------
a9/(b5+b7)+a3/(b8+b4)
=a9/2b6+a3/2b6
=a9+a3/2b6
=2a6/2b6
=(a1+a11)/(b1+b11)
=11(a1+a11)/11(b1+b11)
=[11(a1+a11)/2]/[11(b1+b11)/2]
=S11/T11
=19/41